На числовой прямой даны два отрезка: P = [10, 20] и Q = [15, 25]. Выберите такой отрезок A, что формула
( (x ∈ А) → (x ∈ P) ) ∨ (x ∈ Q)
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [10, 15]
2) [10, 30]
3) [8, 22]
4) [8, 30]
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Введем обозначения:
(x ∈А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q.
Применив преобразование импликации, получаем:
¬А∨P∨Q.
Выражение P∨Q истинно тогда, когда x∈[10;25]. Поскольку все выражение должно быть истинно для ЛЮБОГО x, выражение ¬A должно быть истинно для всех х вне этого отрезка, а тогда само выражение А должно быть истинно на отрезке, целиком принадлежащем [10;25].
Из всех заданных отрезков только отрезок [10;15] удовлетворяет этим условиям.

