СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д15 № 4805

На числовой прямой даны два отрезка: P = [5, 10] и Q = [15, 18]. Выберите такой отрезок A, что формула

 

( (x ∈ А) → (x ∈ P) ) ∨ (x ∈ Q)

 

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

 

 

 

1) [3, 11]

2) [6, 10]

3) [8, 16]

4) [17, 23]

Решение.

Введем обозначения:

 

(x ∈А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q.

 

Применив преобразование импликации, получаем:

 

¬A ∨ P ∨ Q.

 

Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Поскольку все выражение должно быть истинно для любого x, выражение ¬A должно быть истинно на множестве (−∞, 5) ∪ (18, ∞) ∪ [10; 15]. Соответственно, выражение A должно быть истинно внутри отрезков [5; 10] и [15; 18] или любого другого, который полностью включает эти отрезки, но сам не выходит за их пределы.

 

Из всех отрезков только отрезок [6, 10] удовлетворяет этим условиям.

 

Ответ: 2.