На числовой прямой даны два отрезка: Р = [2, 42] и Q = [22, 62]. Выберите из предложенных отрезков такой отрезок А, что логическое выражение
((х ∈ Q) → (х ∈ Р)) → ¬(х ∈ A)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
1) [3,14]
2) [23,32]
3) [43,54]
4) [15,45]
Введем обозначения:
(x ∈А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q.
Преобразовав, получаем:
(¬Q ∨ P) → ¬A = Q ∧ ¬P ∨ ¬A.
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Логическое И истинно, когда истинны оба утверждения. Условию Q ∧ ¬P = 1 удовлетворяет отрезок [42; 62]. Поскольку выражение Q ∧ ¬P ∨ ¬A должно быть тождественно истинным, выражение ¬A должно быть истинно на лучах (-∞, 42) и (62, +∞).
Из всех заданных отрезков только отрезок [43,54] удовлетворяют этим условиям.

