Каталог заданий.
Игра в камни, три варианта хода
Версия для печати и копирования в MS Word
1
Тип Д26 C3 № 5470
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 24. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 24 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 23.

 

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


2
Тип Д26 C3 № 5502
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 36. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 36 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 35.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


3
Тип Д26 C3 № 5598
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 44. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 44 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 43.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


4
Тип Д26 C3 № 5630
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 24. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 24 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 23.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

− у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

− у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


5
Тип Д26 C3 № 5694
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 44. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 44 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 43.

 

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


6
Тип Д26 C3 № 5726
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 40. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 40 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 39.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


7
Тип Д26 C3 № 5758
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 36. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 36 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 35.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


8
Тип Д26 C3 № 5790
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 32. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 32 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 31.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


9
Тип Д26 C3 № 5822
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 28. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 28 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 27.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


10
Тип Д26 C3 № 5854
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 39. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 39 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 38.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


11
Тип Д26 C3 № 5886
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 39. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 39 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 38.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


12
Тип Д26 C3 № 5950
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 31. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 31 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 30.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


13
Тип Д26 C3 № 5982
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

 

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 27. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 27 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 26.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

 

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

 

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

 

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


14
Тип Д26 C3 № 6016
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 27. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 27 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤26.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.

Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

– у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

– у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва

ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


15
Тип Д26 C3 № 6791
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 64. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 64 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 63.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

а)  При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те три таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом. Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


16
Тип Д26 C3 № 6823
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 75. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 75 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 74.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те три таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


17
Тип Д26 C3 № 6905
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 43. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 43 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 42.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


18
Тип Д26 C3 № 6937
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 47. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 47 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 46.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход и (б) Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


19
Тип Д26 C3 № 6970
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или пять кам­ней или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 20 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 41.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 41 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 40.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может

встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1.

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щие ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная

стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

- Петя не может вы­иг­рать за один ход;

- Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

- у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

- у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


20
Тип Д26 C3 № 7002
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или пять кам­ней или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 20 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 42.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 42 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может

встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1.

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать

в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щие ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

- Петя не может вы­иг­рать за один ход;

- Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

- у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

- у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать

пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


21
Тип Д26 C3 № 7320
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 41.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 41 ка­мень или боль­ше.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 40.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

За­да­ние 1.

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S и ука­жи­те вы­иг­рыш­ные ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

- Петя не может вы­иг­рать за один ход;

- Петя может вы­иг­рать своим вто­рым ходом, не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

- у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

- у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


22
Тип Д26 C3 № 7352
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 47. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 47 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 46.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

За­да­ние 1.

а)  При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход?

Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём (а) Петя не может вы­иг­рать за один ход, но (б) Петя может вы­иг­рать своим вто­рым ходом, не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать 1-м ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


23
Тип Д26 C3 № 7427
i

Две по­дру­ги, Катя и Ира, иг­ра­ют в сле­ду­ю­щую игру. Перед по­дру­га­ми лежит куча кам­ней. Де­вуш­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Катя. За один ход де­вуш­ка может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 20 кам­ней. У каж­дой де­вуш­ки, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 35. По­бе­ди­те­лем счи­та­ет­ся де­вуш­ка, сде­лав­шая по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 35 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤34.

Будем го­во­рить, что де­вуш­ка имеет вы­иг­рыш­ную стра­те­гию, если она может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию по­дру­ги  — зна­чит, опи­сать, какой ход она долж­на сде­лать в любой си­ту­а­ции, ко­то­рая ей может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Катя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Катя не может вы­иг­рать за один ход, но при любом ходе Кати Ира может вы­иг­рать своим пер­вым ходом.

Опи­ши­те вы­иг­рыш­ную стра­те­гию Иры.

2.  Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Кати есть вы­иг­рыш­ная стра­те­гия, причём (а) Катя не может вы­иг­рать за один ход и (б) Катя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ира.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Кати.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

– у Иры есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ей вы­иг­рать пер­вым или вто­рым ходом при любой игре Кати, и

– у Иры нет стра­те­гии, ко­то­рая поз­во­лит ей га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Иры. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Иры (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


24
Тип Д26 C3 № 7471
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или три камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 18 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 35. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 35 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 34. Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щие ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− Петя не может вы­иг­рать за один ход;

− может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

− у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На ри­сун­ке на рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


25
Тип Д26 C3 № 7771
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или три камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 18 или 30 кам­ней. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 48. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 48 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 47.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1. а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Паша может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Паша не может вы­иг­рать за один ход, но при любом ходе Паши Вася может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

 

За­да­ние 2. Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Паши есть вы­иг­рыш­ная стра­те­гия, причём (а) Паша не может вы­иг­рать за один ход и (б) Паша может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Вася. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Паши.

 

За­да­ние 3. Ука­жи­те зна­че­ние S, при ко­то­ром:  — у Васи есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Паши, и  — у Васи нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом. Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Васи. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Васи (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах – ко­ли­че­ство кам­ней в


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


26
Тип Д26 C3 № 7798
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 51. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 51 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 50.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1. а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Паша может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Паша не может вы­иг­рать за один ход, но при любом ходе Паши Вася может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

 

За­да­ние 2. Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Паши есть вы­иг­рыш­ная стра­те­гия, причём (а) Паша не может вы­иг­рать за один ход и (б) Паша может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Вася. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Паши.

 

За­да­ние 3. Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Васи есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Паши, и

— у Васи нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом. Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Васи. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Васи (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах – ко­ли­че­ство кам­ней в


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


27
Тип Д26 C3 № 8674
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство

кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 56. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 56 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 55.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Паша может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Паша не может вы­иг­рать за один ход, но при любом ходе Паши Вася может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

 

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Паши есть вы­иг­рыш­ная стра­те­гия, причём (а) Паша не может вы­иг­рать за один ход и (б) Паша может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Вася. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Паши.

 

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром:

    – у Васи есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Паши, и

    – у Васи нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Васи (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах – ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


28
Тип Д26 C3 № 9178
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 76. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 76 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 75.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Паша может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Паша не может вы­иг­рать за один ход, но при любом ходе Паши Вася может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

 

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Паши есть вы­иг­рыш­ная стра­те­гия, причём (а) Паша не может вы­иг­рать за один ход и (б) Паша может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Вася. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Паши.

 

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром:

    – у Васи есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Паши, и

    – у Васи нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Васи (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах – ко­ли­че­ство кам­ней в куче.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


29
Тип Д26 C3 № 9661
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 46. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 46 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 45.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те 3 таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать за один ход и может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы).


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


30
Тип Д26 C3 № 9707
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или три камня или уве­ли­чить ко­ли­че­ство

кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 18 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 33. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 33 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 32.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Паша может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Паша не может вы­иг­рать за один ход, но при любом ходе Паши Вася может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

2.  Ука­жи­те 3 таких зна­че­ния S, при ко­то­рых у Паши есть вы­иг­рыш­ная стра­те­гия, причём Паша не может вы­иг­рать за один ход и может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Вася. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Паши.

3.  Ука­жи­те хотя бы одно зна­че­ние S, при ко­то­ром:

— у Васи есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Паши, и

— у Васи нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Васи (в виде ри­сун­ка или таб­ли­цы).


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


31
Тип Д26 C3 № 10302
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень, или

до­ба­вить в кучу два камня, или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 33. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 34 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 33.

 

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1.

а)  При каких зна­че­ни­ях числа S Петя может вы­иг­рать пер­вым ходом? Ука­жи­те все такие зна­че­ния и вы­иг­ры­ва­ю­щий ход Пети.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те три зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать пер­вым ходом, но может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те такое зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и при этом у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


32
Тип Д26 C3 № 10329
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень, или

до­ба­вить в кучу два камня, или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 29. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 30 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 29.

 

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

 

За­да­ние 1.

а)  При каких зна­че­ни­ях числа S Петя может вы­иг­рать пер­вым ходом? Ука­жи­те все такие зна­че­ния и вы­иг­ры­ва­ю­щий ход Пети.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те три зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать пер­вым ходом, но может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те такое зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и при этом у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


33
Тип Д26 C3 № 10400
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, или до­ба­вить в кучу три камня, или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 13 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 53. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 54 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 53. Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1

а)  При каких зна­че­ни­ях числа S Петя может вы­иг­рать пер­вым ходом?

Ука­жи­те все такие зна­че­ния и вы­иг­ры­ва­ю­щий ход Пети.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2

Ука­жи­те три зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать пер­вым ходом, но может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3

Ука­жи­те такое зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и при этом у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


34
Тип Д26 C3 № 10427
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень, или

до­ба­вить в кучу три камня, или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 13 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 49. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 50 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 49.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1

а)  При каких зна­че­ни­ях числа S Петя может вы­иг­рать пер­вым ходом?

Ука­жи­те все такие зна­че­ния и вы­иг­ры­ва­ю­щий ход Пети.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2

Ука­жи­те три зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать пер­вым ходом, но может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3

Ука­жи­те такое зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и при этом у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


35
Тип Д26 C3 № 11127
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или три камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 18 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 28.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 28 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 27.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щие ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− Петя не может вы­иг­рать за один ход

− Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

− у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На ри­сун­ке на рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


36
Тип Д26 C3 № 11255
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 64.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 65 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 64.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щие ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− Петя не может вы­иг­рать за один ход

− Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

− у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На ри­сун­ке на рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


37
Тип Д26 C3 № 11282
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 54. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 55 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 54.

 

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щие ходы.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− Петя не может вы­иг­рать за один ход

− Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

− у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

 

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На ри­сун­ке на рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


38
Тип Д26 C3 № 11335
i

Два иг­ро­ка, Петя и Валя, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, до­ба­вить в кучу че­ты­ре камня, или уве­ли­чить ко­ли­че­ство кам­ней в куче в 2 раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 52. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 52 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 51.

1.  При каких S: 1а) Петя вы­иг­ры­ва­ет пер­вым ходом; 1б) Валя вы­иг­ры­ва­ет пер­вым ходом?

2.  На­зо­ви­те два зна­че­ния S, при ко­то­рых Петя может вы­иг­рать своим вто­рым ходом.

3.  На­зо­ви­те одно зна­че­ние S, при ко­то­ром Валя вы­иг­ры­ва­ет своим пер­вым или вто­рым ходом.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


39
Тип Д26 C3 № 13422
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 74. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 74 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 73.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

 

2.  Ука­жи­те три таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём

— Петя не может вы­иг­рать за один ход, но

— Петя может вы­иг­рать своим вто­рым ходом, не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го из ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

 

3.  Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать 1-м ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


40
Тип Д26 C3 № 13475
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 65. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 65 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 64.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) При каких зна­че­ни­ях числа S Петя может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

2.  Ука­жи­те три таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём

— Петя не может вы­иг­рать за один ход, но

— Петя может вы­иг­рать своим вто­рым ходом, не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го из ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, од­на­ко у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать 1-м ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


41
Тип Д26 C3 № 13610
i

Два иг­ро­ка, Паша и Валя, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может (1) до­ба­вить в кучу один ка­мень или (2) уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза или (3) уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 30 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 42. Если при этом в куче ока­за­лось не более 72 кам­ней, то по­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход. В про­тив­ном слу­чае по­бе­ди­те­лем ста­но­вит­ся его про­тив­ник. На­при­мер, если в куче было 30 кам­ней и Паша утро­ит ко­ли­че­ство кам­ней в куче, то игра за­кон­чит­ся и по­бе­ди­те­лем будет Валя. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

1.  а) При каких зна­че­ни­ях числа S Паша может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния и со­от­вет­ству­ю­щие ходы Паши.

б)  У кого из иг­ро­ков есть вы­иг­рыш­ная стра­те­гия при S = 37, 38, 39, 40? Опи­ши­те вы­иг­рыш­ные стра­те­гии для этих слу­ча­ев.

2.  У кого из иг­ро­ков есть вы­иг­рыш­ная стра­те­гия при S = 13? Опи­ши­те со­от­вет­ству­ю­щие вы­иг­рыш­ные стра­те­гии.

3.  У кого из иг­ро­ков есть вы­иг­рыш­ная стра­те­гия при S = 12? По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах – ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


42
Тип Д26 C3 № 13637
i

Два иг­ро­ка, Паша и Валя, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может (1) до­ба­вить в кучу один ка­мень или (2) уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза или (3) уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 30 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 36. Если при этом в куче ока­за­лось не более 60 кам­ней, то по­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход. В про­тив­ном слу­чае по­бе­ди­те­лем ста­но­вит­ся его про­тив­ник. На­при­мер, если в куче было 30 кам­ней и Паша утро­ит ко­ли­че­ство кам­ней в куче, то игра за­кон­чит­ся и по­бе­ди­те­лем будет Валя. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 35.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

1.  а) При каких зна­че­ни­ях числа S Паша может вы­иг­рать в один ход? Ука­жи­те все такие зна­че­ния и со­от­вет­ству­ю­щие ходы Паши.

б)  У кого из иг­ро­ков есть вы­иг­рыш­ная стра­те­гия при S = 31, 32, 33, 34? Опи­ши­те вы­иг­рыш­ные стра­те­гии для этих слу­ча­ев.

2.  У кого из иг­ро­ков есть вы­иг­рыш­ная стра­те­гия при S = 11? Опи­ши­те со­от­вет­ству­ю­щие вы­иг­рыш­ные стра­те­гии.

3.  У кого из иг­ро­ков есть вы­иг­рыш­ная стра­те­гия при S = 10? По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах – ко­ли­че­ство кам­ней в по­зи­ции.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


43
Тип Д26 C3 № 15121
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень или

до­ба­вить в кучу два камня или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

 

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 37. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 38 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 37.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы сле­ду­ю­ще­го стра­те­гии иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1.

а)  На­зо­ви­те все зна­че­ния S, при ко­то­рых Петя может вы­иг­рать пер­вым ходом, причём у Пети есть ровно один вы­иг­ры­ва­ю­щий ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те три зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать пер­вым ходом, но Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те такое зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и при этом у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.

Де­ре­во не долж­но со­дер­жать пар­тий, не­воз­мож­ных при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не будет вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


44
Тип Д26 C3 № 15148
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень или

до­ба­вить в кучу два камня или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

 

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 41. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 42 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы сле­ду­ю­ще­го стра­те­гии иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1.

а)  На­зо­ви­те все зна­че­ния S, при ко­то­рых Петя может вы­иг­рать пер­вым ходом, причём у Пети есть ровно один вы­иг­ры­ва­ю­щий ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те три зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём Петя не может вы­иг­рать пер­вым ходом, но Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня. Для ука­зан­ных зна­че­ний S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те такое зна­че­ние S, при ко­то­ром у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, и при этом у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход, в узлах  — ко­ли­че­ство кам­ней в по­зи­ции.

Де­ре­во не долж­но со­дер­жать пар­тий, не­воз­мож­ных при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не будет вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


45
Тип Д26 C3 № 15642
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 69. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 69 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 68.

За­да­ние 1. а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Паша может вы­иг­рать в один ход. Обос­нуй­те, что най­де­ны все нуж­ные зна­че­ния S, и ука­жи­те вы­иг­ры­ва­ю­щий ход для каж­до­го ука­зан­но­го зна­че­ния S. б)Ука­жи­те такое зна­че­ние S, при ко­то­ром Паша не может вы­иг­рать за один ход, но при любом ходе Паши Вася может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Васи.

За­да­ние 2. Ука­жи­те 2 таких зна­че­ния S, при ко­то­рых у Паши есть вы­иг­рыш­ная стра­те­гия, причём Паша не может вы­иг­рать за один ход и может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Вася. Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Паши.

За­да­ние 3. Ука­жи­те хотя бы одно зна­че­ние S, при ко­то­ром у Васи есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Паши, и у Васи нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом. Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Васи. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Васи (в виде ри­сун­ка или таб­ли­цы).


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


46
Тип Д26 C3 № 15866
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 75 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 70.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 70 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 мень­ше или равно S мень­ше или равно 69.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, т. е. не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1.

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать один ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—Петя не может вы­иг­рать за один ход;

—Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

—у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче.

Де­ре­во не долж­но со­дер­жать пар­тии, не­воз­мож­ные при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не яв­ля­ет­ся вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


47
Тип Д26 C3 № 18728
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 48.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 48 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 мень­ше или равно S мень­ше или равно 47.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, т. е. не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1.

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать один ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—Петя не может вы­иг­рать за один ход;

—Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

—у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче.

Де­ре­во не долж­но со­дер­жать пар­тии, не­воз­мож­ные при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не яв­ля­ет­ся вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


48
Тип Д26 C3 № 18805
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или три камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 18 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 42.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 42 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 мень­ше или равно S мень­ше или равно 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, т. е. не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

За­да­ние 1.

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать за один ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2.

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—Петя не может вы­иг­рать за один ход;

—Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3.

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

—у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче.

Де­ре­во не долж­но со­дер­жать пар­тии, не­воз­мож­ные при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не яв­ля­ет­ся вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


49
Тип Д26 C3 № 23924
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня либо уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 75 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 63.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 63 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 62.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, т. е. не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать за один ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

— Петя не может вы­иг­рать за один ход;

— Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче. Де­ре­во не долж­но со­дер­жать пар­тии, не­воз­мож­ные при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не яв­ля­ет­ся вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей


50
Тип Д26 C3 № 25962
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня либо уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 75 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 68.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 68 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 67.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, т. е. не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

 

Вы­пол­ни­те сле­ду­ю­щие за­да­ния.

За­да­ние 1

а)  Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать за один ход.

б)  Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Опи­ши­те вы­иг­рыш­ную стра­те­гию Вани.

За­да­ние 2

Ука­жи­те два таких зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

— Петя не может вы­иг­рать за один ход;

— Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для каж­до­го ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

За­да­ние 3

Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те, кто де­ла­ет ход; в узлах  — ко­ли­че­ство кам­ней в куче. Де­ре­во не долж­но со­дер­жать пар­тии, не­воз­мож­ные при ре­а­ли­за­ции вы­иг­ры­ва­ю­щим иг­ро­ком своей вы­иг­рыш­ной стра­те­гии. На­при­мер, пол­ное де­ре­во игры не яв­ля­ет­ся вер­ным от­ве­том на это за­да­ние.


текст
html
голос

Загрузка решений доступна для зарегистрировавшихся пользователей

Завершить работу, свериться с ответами, увидеть решения.