Разное
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наибольшего натурального числа А формула
¬ДЕЛ(x, А) → (ДЕЛ(x, 6) → ¬ДЕЛ(x, 4))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наибольшего натурального числа А формула
¬ДЕЛ(x, А) → (ДЕЛ(x, 6) → ¬ДЕЛ(x, 9))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наибольшего натурального числа А формула
(A < 50) ∧ (¬ДЕЛ(x, А) → (ДЕЛ(x, 10) → ¬ДЕЛ(x, 12)))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наибольшего натурального числа А формула
(A < 50) ∧ (¬ДЕЛ(x, А) → (ДЕЛ(x, 10) → ¬ДЕЛ(x, 18)))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наибольшего натурального числа А формула
ДЕЛ(90, A) ∧ (¬ДЕЛ(x, А) → (ДЕЛ(x, 15) → ¬ДЕЛ(x, 20)))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?
Пройти тестирование по этим заданиям