Задания для подготовки
Имеется набор данных, состоящий из пар положительных целых чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел не делилась
Входные данные.
Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество
Пример организации исходных данных во входном файле:
6
1 3
5 12
6 9
5 4
3 3
1 1
Для указанных входных данных значением искомой суммы должно быть
В ответе укажите два числа: сначала значение искомой суммы для
Предупреждение: для обработки
Ответ:
Последовательность натуральных чисел характеризуется
Входные данные.
Даны два входных файла
Пример организации исходных данных во входном файле:
5
40
1000
7
28
55
Пример выходных данных для приведённого выше примера входных данных:
28000 В ответе укажите два числа: сначала значение искомого произведения для
Ответ:
На вход программы поступает последовательность из
В первой строке входных данных задаётся количество
Входные данные.
Даны два входных файла
Пример организации исходных данных во входном файле:
4
2
6
13
39
Пример выходных данных для приведённого выше примера входных данных:
4
В ответе укажите два числа: сначала значение искомой суммы для
Ответ:
Пояснение. Из четырёх заданных чисел можно составить
Дана последовательность
Входные данные.
В первой строке входных данных задаётся количество
Пример организации исходных данных во входном файле:
5
34
12
51
52
51
Пример выходных данных для приведённого выше примера входных данных:
51 51 В ответе укажите четыре числа: сначала значение искомой пары для
Ответ:
Пояснение. Из данных пяти чисел можно составить три различные пары, удовлетворяющие условию:
На вход программы поступает последовательность из
Входные данные.
В первой строке входных данных задаётся количество
Пример организации исходных данных во входном файле:
4
168
7
320
328
Пример выходных данных для приведённого выше примера входных данных:
168 320 В ответе укажите четыре числа: сначала значение искомой пары для
Ответ:
Дана последовательность
Входные данные.
В первой строке входных данных задаётся количество
Пример организации исходных данных во входном файле:
6
40
40
120
30
50
110
Пример выходных данных для приведённого выше примера входных данных:
3 В ответе укажите два числа: сначала количество пар для
Ответ:
Пояснение. Из данных шести чисел можно составить три пары, удовлетворяющие условию: (40, 120), (40, 120), (50, 110). У пар (40, 40) и (30, 50) сумма делится
На вход программы поступает последовательность из
Входные данные.
В первой строке входных данных задаётся количество
В каждой из последующих n строк записано одно целое положительное число, не превышающее 10 000.
В качестве результата программа должна напечатать элементы искомой пары. Если таких пар несколько, можно вывести любую из них. Гарантируется, что хотя бы одна такая пара в последовательности есть.
Пример организации исходных данных во входном файле:
6
60
140
61
100
300
59
Пример выходных данных для приведённого выше примера входных данных:
140 100 В ответе укажите четыре числа: сначала искомую пару чисел для
Ответ:
Пояснение. Из шести заданных чисел можно составить три пары, сумма элементов которых делится на m = 120: 60 + 300, 140 + 100 и 61 + 59. Во второй и третьей из этих пар первый элемент больше второго, но во второй паре сумма больше.
Набор данных состоит из пар натуральных чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел делилась
Входные данные.
Первая строка входного файла содержит
Пример организации исходных данных во входном файле:
6
1 3
5 10
6 9
5 4
3 3
1 1
Для указанных данных искомая сумма
В ответе укажите два числа: сначала значение искомой суммы для
Предупреждение: для обработки
Ответ:
Набор данных состоит из троек натуральных чисел. Необходимо распределить все числа на три группы, при этом в каждую группу должно попасть ровно одно число из каждой исходной тройки. Сумма всех чисел в первой группе должна быть чётной, во второй — нечётной. Определите максимально возможную сумму всех чисел в третьей группе.
Входные данные.
Первая строка входного файла содержит
Пример входного файла:
3
1 2 3
5 12 4
6 9 7
Для указанных данных искомая сумма
Вам даны два входных файла
Предупреждение: для обработки
Ответ:
Набор данных состоит из нечётного количества пар натуральных чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы чётность суммы выбранных чисел совпадала с чётностью большинства выбранных чисел и при этом сумма выбранных чисел была как можно больше. Определите максимальную сумму, которую можно получить при таком выборе. Гарантируется, что удовлетворяющий условиям выбор возможен.
Входные данные.
Первая строка входного файла содержит
Пример входного файла:
5
15 8
5 11
6 3
7 2
9 14
Для указанных данных надо выбрать числа 15, 11, 6, 7 и 14. Большинство из них нечётны, сумма выбранных чисел
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для
Предупреждение: для обработки
Ответ:
В текстовом файле записан набор натуральных чисел, не превышающих 108. Гарантируется, что все числа различны. Из набора нужно выбрать три числа, сумма которых делится
Входные данные.
Первая строка входного файла содержит целое
Пример входного файла:
4
5
8
14
11 В данном случае есть четыре подходящие тройки: 5, 8, 11
Вам даны два входных файла
Ответ:
В текстовом файле записан набор пар натуральных чисел, не превышающих 10 000. Необходимо выбрать из набора некоторые пары так, чтобы первое число в каждой выбранной паре было нечётным, сумма бо́льших чисел во всех выбранных парах была нечётной, а сумма меньших — чётной. Какую наибольшую сумму чисел во всех выбранных парах можно при этом получить?
Входные данные.
Первая строка входного файла содержит целое число N — общее количество пар в наборе. Каждая из следующих N строк содержит пару чисел.
Пример входного файла:
4
5 2
8 15
7 14
11 9 В данном случае есть три подходящие пары: (5, 2), (7, 14) и (11, 9). Пара (8, 15) не подходит, так как в ней первое число чётное. Чтобы удовлетворить требования, надо взять пары (7, 14) и (11, 9). Сумма бо́льших чисел в этом случае
Вам даны два входных файла
Ответ:
Имеется набор данных, состоящий из троек положительных целых чисел. Необходимо выбрать из каждой тройки ровно одно число так, чтобы сумма всех выбранных чисел не делилась на k = 109 и при этом была максимально возможной. Гарантируется, что искомую сумму получить можно. Программа должна напечатать одно число — максимально возможную сумму, соответствующую условиям задачи.
Входные данные.
Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество троек N (1 ≤ N ≤ 1 000 000). Каждая из следующих
Пример организации исходных данных во входном файле:
6
1 3 7
5 12 6
6 9 11
5 4 8
3 5 4
1 1 1
Для указанных входных данных, в случае, если k = 5, значением искомой суммы является
В ответе укажите два числа: сначала значение искомой суммы для
Ответ:
На вход программы поступает последовательность из целых положительных чисел. Необходимо выбрать такую подпоследовательность подряд идущих чисел, чтобы их сумма была максимальной и делилась
Входные данные.
Даны два входных файла
Пример входного файла:
8
2
3
4
93
42
34
5
95
Для делителя 50 при указанных входных данных значением искомой суммы должно быть
Ответ:
Дана последовательность из N натуральных чисел. Рассматриваются все её непрерывные подпоследовательности, такие что сумма элементов каждой из них кратна k = 43. Найдите среди них подпоследовательность с максимальной суммой, определите её длину. Если таких подпоследовательностей найдено несколько, в ответе укажите количество элементов самой короткой из них.
Входные данные.
Даны два входных файла
Пример организации исходных данных во входном файле:
14
1
2
1
4
93
8
5
95
6
4
3
2
8
6 В ответе укажите два числа: сначала значение искомой длины для
Предупреждение: для обработки
Ответ:
Дана последовательность натуральных чисел. Необходимо найти максимально возможную сумму её непрерывной подпоследовательности, в которой количество чётных элементов кратно k = 10.
Входные данные.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
На каждом 3-м километре кольцевой автодороги с двусторонним движением установлены контейнеры для мусора. Длина кольцевой автодороги равна
Определите минимальные расходы на доставку мусора в центр переработки отходов.
Входные данные.
Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит
В ответе укажите два числа: сначала значение искомой величины для
Типовой пример организации данных во входном файле:
6
8
20
5
13
7
19
При таких исходных данных, если контейнеры установлены на каждом километре автодороги, необходимо открыть центр переработки
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Предупреждение: для обработки
Ответ:
Дана последовательность натуральных чисел. Необходимо определить количество её непрерывных подпоследовательностей, сумма элементов которых
Входные данные.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
У медицинской компании есть
Стоимость перевозки биоматериалов равна произведению расстояния от пункта до лаборатории на количество контейнеров с пробирками. Общая стоимость перевозки за день равна сумме стоимостей перевозок из каждого пункта в лабораторию. Лабораторию расположили в одном из пунктов приёма биоматериалов таким образом, что общая стоимость доставки биоматериалов из всех пунктов минимальна.
Определите минимальную общую стоимость доставки биоматериалов из всех пунктов приёма в лабораторию.
Входные данные.
Дано два входных файла
В ответе укажите два числа: сначала значение искомой величины для
Пример организации исходных данных во входном файле:
6
1 100
2 200
5 4
7 3
8 2
10 190
При таких исходных данных и вместимости транспортировочного контейнера, составляющей
Предупреждение: для обработки
Ответ:
Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых сумма чисел в паре делится без остатка
Входные данные.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых десятичная запись произведения чисел в паре заканчивается ровно на
Входные данные.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
Метеорологическая станция ведёт наблюдение за количеством выпавших осадков. Показания записываются каждую минуту в течение
Определяется пара измерений, между которыми прошло не менее
Входные данные.
Даны два входных файла
В ответе укажите два числа: сначала значение искомой величины для
Предупреждение: для обработки
Ответ:
Дана последовательность натуральных чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними
Назовём парой любые два числа из последовательности, расстояние между которыми
Входные данные.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
По каналу связи передаётся последовательность целых неотрицательных чисел — показания прибора, полученные с интервалом в 1 мин. в течение
Определите два таких переданных числа, чтобы между моментами их передачи прошло не менее
Входные данные.
Даны два входных файла
Запишите в ответе два числа: сначала значение искомой величины для
Типовой пример организации данных во входном файле:
3
5
15
10
200
0
30
При таких исходных данных максимально возможное суммарное количество осадков
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Ответ:
Дана последовательность натуральных чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними
Входные данные.
Первая строка входного файла содержит целое число N общее количество чисел в наборе. Каждая из следующих
Вам даны два входных файла
Ответ:
По каналу связи передаётся последовательность целых чисел — показания прибора. В течение
Определите три таких переданных числа, чтобы между моментами передачи любых двух из них прошло не менее
Входные данные.
Даны два входных файла (файл A и файл B), каждый из которых в первой строке содержит натуральное число К — минимальное количество минут, которое должно пройти между моментами передачами любых двух из трёх показаний, а во второй — количество переданных
Запишите в ответе два числа: сначала значение искомой величины для
Типовой пример организации данных во входном файле:
2
6
15
14
20
23
21
10
При таких исходных искомая величина
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Ответ:
В текстовом файле содержится некоторое количество натуральных чисел. Определите и запишите в ответ максимальную сумму трех чисел, чтобы любые два числа находились на расстоянии
Входные данные.
Первая строка файла содержит
Ответ:
В первых двух строках подаются два натуральных числа: сначала N — количество натуральных чисел в последовательности, затем K — минимальное расстояние, допустимое между любыми двумя элементами.
Требуется найти минимальное значение произведения тройки элементов так, что между любыми элементами тройки расстояние между двумя элементами не менее K (то есть разность их индексов по модулю больше или
Входные данные.
Ответ:
Геодезист измеряет высоту над уровнем моря (в миллиметрах) относительно уровня начала дороги, для каждой
Проектировщикам необходимо выбрать участок дороги длиной не менее
Определите две метровые отметки дороги так, чтобы расстояние между ними было не менее
Входные данные.
Даны два входных файла
В каждой из следующих
В ответе укажите два числа: сначала значение искомой величины для
Ответ:
Дана последовательность целых чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними
Необходимо выбрать из последовательности три числа так, чтобы минимальное расстояние между выбранными числами было
В ответе запишите найденную сумму
Входные данные.
Первая строка входного файла содержит целое
Пример входного файла:
2
6
6
7
8
2
3
5
Из этого файла в соответствии с условиями можно выбрать числа
Вам даны два входных файла
Ответ:
Задание выполняется с использованием прилагаемых файлов.
По каналу связи передаётся последовательность целых чисел — показания прибора, полученные с интервалом 1 мин. в течение
Определите два таких переданных числа, чтобы между моментами их передачи прошло не менее мин., а их произведение было максимально возможным. В ответе запишите — найденное произведение.
Входные данные.
Даны два входных файла
Выходные данные.
Запишите в ответе два числа: сначала значение искомой величины для
Ответ:
По каналу связи передаётся последовательность целых неотрицательных чисел — показания прибора, полученные с интервалом в 1 мин. в течение
Входные данные.
Даны два входных файла
Выходные данные.
Запишите в ответе два числа: сначала значение искомой величины для
Типовой пример организации данных во входном файле:
3
5
15
10
200
0
30
При таких исходных данных максимально возможное суммарное количество осадков
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Ответ:
Дана последовательность целых чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними
Необходимо выбрать из последовательности три числа так, чтобы максимальное расстояние между выбранными числами было
В ответе запишите найденную сумму.
Входные данные.
Первая строка входного файла содержит целое
Пример входного файла:
1
5
6
7
8
2
3
Из этого файла в соответствии с условиями можно выбрать числа
Вам даны два входных файла
Ответ:
Дана последовательность целых чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними
Необходимо выбрать из последовательности три числа так, чтобы максимальное расстояние между выбранными числами было
В ответе запишите найденную сумму
Входные данные.
Первая строка входного файла содержит целое
Пример входного файла:
2
6
6
7
8
2
3
5
Из этого файла в соответствии с условиями можно выбрать числа
Вам даны два входных файла
Ответ:
Дана последовательность целых чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними
Необходимо выбрать из последовательности три числа так, чтобы расстояние между какими-то двумя из них было
Запишите в ответе найденную сумму.
Входные данные.
Первая строка входного файла содержит целое число K — параметр для определения расстояния, вторая строка содержит
Пример входного файла.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
Дана последовательность натуральных чисел. Необходимо выбрать из последовательности три числа так, чтобы их сумма делилась
В ответе запишите найденную сумму.
Входные данные.
Первая строка входного файла содержит целое
Вам даны два входных файла
Ответ:
Дана последовательность целых чисел. Необходимо выбрать из последовательности три числа так, чтобы они образовали возрастающую последовательность. Определите минимально возможную сумму выбранных чисел.
Входные данные.
Первая строка входного файла содержит
Пример.
Дан входной файл:
4
3
5
2
6
Из этого файла надо выбрать числа 3, 5 и 6, сумма которых
Выбрать числа 3, 5 и 2 нельзя, так как они не образуют возрастающую последовательность.
Вам даны два входных файла
Ответ:
Для участников велогонки на каждом километре кольцевой трассы с двусторонним движением установлены пункты питания. Длина кольцевой трассы равна
Определите минимальную суммарную стоимость доставки питания для спортсменов из цеха его подготовки в пункты питания на трассе.
Входные данные.
Дано два входных файла
пунктов питания на кольцевой трассе. В каждой из следующих
Типовой пример организации данных во входном файле:
6
8
20
5
13
7
19
При таких исходных данных, если контейнеры установлены на каждом километре автодороги, необходимо открыть центр переработки
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Предупреждение: для обработки
Ответ:
Пусть S — последовательность из
Входные данные.
Дано два входных файла (файл А и файл B), каждый из которых в первой строке содержит
Ответ:
Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд — это набор звёзд (точек) на графике, лежащий внутри прямоугольника высотой H и шириной W. Каждая звезда обязательно принадлежит только одному из кластеров.
Истинный центр кластера, или центроид, — это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Под расстоянием понимается расстояние Евклида между двумя точками A(x1, y1) и B(x2, y2) на плоскости, которое вычисляется по формуле:
В файле A хранятся данные о звёздах двух кластеров, где H = 3, W = 3 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Значения даны в условных единицах. Известно, что количество звёзд не превышает 1000.
В файле Б хранятся данные о звёздах трёх кластеров, где H = 3, W = 3 для каждого кластера. Известно, что количество звёзд не превышает 10 000.
Структура хранения информации о звездах в файле Б аналогична файлу А.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров, и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке сначала целую часть произведения Px × 10 000 , затем целую часть произведения Py × 10 000 для файла А, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — прямоугольников
Центроидом кластера называется та из входящих в него точек, для которой минимальна сумма расстояний до всех остальных точек кластера.
Обработка результатов эксперимента включает следующие шаги:
1) кластер, содержащий наименьшее число точек, исключается;
2) определяются центроиды всех оставшихся кластеров;
3) для найденных центроидов вычисляется средняя точка.
Средней для группы точек называется точка (не обязательно входящая в группу), координаты которой определяются как средние арифметические значения координат всех точек группы.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить среднюю точку центроидов всех кластеров за исключением содержащего наименьшее число точек.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. По данным каждого из представленных файлов определите координаты средней точки по описанным выше правилам.
В ответе запишите четыре числа: сначала (в первой строке) координаты X и Y средней точки для файла A, затем (во второй строке) координаты X и Y средней точки для файла B.
В качестве значения координаты указывайте целую часть от умножения числового значения координаты на 10 000.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — прямоугольников
Центроидом кластера называется та из входящих в него точек, для которой минимальна сумма расстояний до всех остальных точек кластера.
Обработка результатов эксперимента включает следующие шаги:
1) кластер, содержащий наибольшее число точек, исключается;
2) определяются центроиды всех оставшихся кластеров;
3) для найденных центроидов вычисляется средняя точка.
Средней для группы точек называется точка (не обязательно входящая в группу), координаты которой определяются как средние арифметические значения координат всех точек группы.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить среднюю точку центроидов всех кластеров за исключением содержащего наибольшее число точек.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. По данным каждого из представленных файлов определите координаты средней точки по описанным выше правилам.
В ответе запишите четыре числа: сначала (в первой строке) координаты X и Y средней точки для файла A, затем (во второй строке) координаты X и Y средней точки для файла B.
В качестве значения координаты указывайте целую часть от умножения числового значения координаты на 10 000.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — кругов радиуса не более 3 единиц так, что каждая точка попадает ровно в один кластер.
Центром кластера считается та из входящих в него точек, для которой минимально максимальное из расстояний до всех остальных точек кластера.
При этом расстояние вычисляется по стандартной формуле расстояния между точками на евклидовой плоскости.
Радиусом кластера считается максимальное из расстояний от центра до остальных точек кластера.
Обработка результатов эксперимента включает следующие шаги:
1) кластер, содержащий наименьшее число точек, исключается;
2) определяются центры и радиусы всех оставшихся кластеров;
3) вычисляется средний радиус оставшихся кластеров.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить средний радиус всех кластеров за исключением содержащего наименьшее число точек.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. По данным каждого из представленных файлов определите средний радиус по описанным выше правилам.
В ответе запишите два числа: сначала средний радиус для файла A, затем для файла B.
В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел.
Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — кругов радиуса не более 3 единиц так, что каждая точка попадает ровно в один кластер.
Центром кластера считается та из входящих в него точек, для которой минимально максимальное из расстояний до всех остальных точек кластера.
При этом расстояние вычисляется по стандартной формуле расстояния между точками на евклидовой плоскости.
Радиусом кластера считается максимальное из расстояний от центра до остальных точек кластера.
Обработка результатов эксперимента включает следующие шаги:
1) кластер, содержащий наибольшее число точек, исключается;
2) определяются центры и радиусы всех оставшихся кластеров;
3) вычисляется средний радиус оставшихся кластеров.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить средний радиус всех кластеров за исключением содержащего наибольшее число точек.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. По данным каждого из представленных файлов определите средний радиус по описанным выше правилам.
В ответе запишите два числа: сначала средний радиус для файла A, затем для файла B.
В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел.
Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — кругов радиуса не более 3 единиц так, что каждая точка попадает ровно в один кластер.
Центром кластера считается та из входящих в него точек, для которой минимально максимальное из расстояний до всех остальных точек кластера.
При этом расстояние вычисляется по стандартной формуле расстояния между точками на евклидовой плоскости.
Радиусом кластера считается максимальное из расстояний от центра до остальных точек кластера.
Обработка результатов эксперимента включает следующие шаги:
1) кластер, содержащий наибольшее число точек, исключается;
2) определяются центры и радиусы всех оставшихся кластеров;
3) вычисляется средний радиус оставшихся кластеров.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить средний радиус всех кластеров за исключением содержащего наибольшее число точек.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. По данным каждого из представленных файлов определите средний радиус по описанным выше правилам.
В ответе запишите два числа: сначала средний радиус для файла A, затем для файла B.
В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.
Ответ:
Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд — это набор звёзд (точек) на графике. Каждая звезда обязательно принадлежит только одному из кластеров. Центр кластера, или центроид, — это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Расстояние между двумя точками
и
вычисляется по формуле:
Даны два входных файла (файл 27A и файл 27Б). В файле 27A хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: координата x, затем координата y (в условных единицах). Известно, что количество звёзд не превышает 1000. В файле 27Б хранятся данные о звёздах трёх кластеров.
Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звездах в файле 27Б аналогична файлу 27А. Возможные данные одного из файлов иллюстрированы графиком.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров, и Py — среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения Px × 10 000, затем целую часть произведения Py × 10 000 для файла 27А, во второй строке — аналогичные данные для файла 27Б.
Ответ:
Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд — это набор звёзд (точек) на графике. Каждая звезда обязательно принадлежит только одному из кластеров. Центр кластера, или центроид, — это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Расстояние между двумя точками
и
вычисляется по формуле:
Даны два входных файла (файл 27A и файл 27Б). В файле 27A хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: координата x, затем координата y (в условных единицах). Известно, что количество звёзд не превышает 1000. В файле 27Б хранятся данные о звёздах трёх кластеров.
Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звездах в файле 27Б аналогична файлу 27А. Возможные данные одного из файлов иллюстрированы графиком.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров, и Py — среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения Px × 10 000, затем целую часть произведения Py × 10 000 для файла 27А, во второй строке — аналогичные данные для файла 27Б.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 4 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 4 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 4 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 4 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 4 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 5 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 4,7 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 4 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — кругов радиуса не более 2 единиц так, что каждая точка попадает ровно в один кластер.
Центром кластера считается та из входящих в него точек, для которой минимально максимальное из расстояний до всех остальных точек кластера.
При этом расстояние вычисляется по стандартной формуле расстояния между точками на евклидовой плоскости.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить минимальное расстояние между центрами двух различных кластеров.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру.
В ответе запишите два числа: сначала минимальное расстояние между центрами кластеров для файла A, затем для файла B.
В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.
Ответ:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел.Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров — кругов радиуса не более 2 единиц так, что каждая точка попадает ровно в один кластер.
Центром кластера считается та из входящих в него точек, для которой минимально максимальное из расстояний до всех остальных точек кластера. При этом расстояние вычисляется по стандартной формуле расстояния между точками на евклидовой плоскости.
В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить максимальное расстояние между центрами двух различных кластеров.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру.
В ответе запишите два числа: сначала максимальное расстояние между центрами кластеров для файла A, затем для файла B.
В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров) так, что они будут лежать внутри сектора окружности радиуса R = 50 с центральным углом 20°.
Гарантируется, что такое разбиение существует и единственно.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости A(x1; y1) и B(x2; y2) вычисляется по формуле:
В файле А хранятся данные о звёздах трёх кластеров, для которых центром окружности является точка C(5, –9). В каждой строке записана информация о расположении на карте одной звезды: сначала координата х, затем координата у. Значения даны в условных единицах. Известно, что количество звёзд не превышает 1000.
В файле Б хранятся данные о звёздах шести кластеров, для которых центром окружности является точка C(–10, –7). Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звёздах в файле Б аналогична файлу А.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Pх — среднее арифметическое абсцисс центров кластеров, и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке сначала целую часть произведения |Pх| × 10 000, затем целую часть произведения |Py| × 10 000 для файла А, во второй строке — аналогичные данные для файла Б. Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющий отношения к заданию. Для выполнения задания используйте данные из прилагаемых файлов.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри квадрата со стороной длиной H, причём эти квадраты между собой не пересекаются. Стороны квадрата не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров квадрата.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости и
вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где H = 6, W = 6 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 8, W = 8 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу A.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров и Py — среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа: в первой строке — сначала целую часть произведения затем целую часть произведения
для файла A, во второй строке — аналогичные данные для файла Б.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию. Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Даны два входных файла (файл А и файл Б).
В файле А хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y (в условных единицах). Известно, что количество звёзд не превышает 1000. В файле Б хранятся данные о звёздах трёх кластеров. Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звездах в файле Б аналогична файлу A. Возможные данные одного из файлов иллюстрированы графиком.
Для файла А определите координаты центра каждого кластера, затем вычислить два числа: Px — минимальное из абсцисс центров кластеров, и Py — минимальное из ординат центров кластеров.
Для файла Б определите координаты центра каждого кластера, затем вычислите два числа: Q1 — расстояние между центрами кластеров с минимальным и максимальным количеством точек, и Q2 — максимальное расстояние от центра кластера с минимальным количеством точек до любой точки кластера с максимальным количеством точек.
Гарантируется, что во всех кластерах количество точек различно.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри прямоугольника со сторонами длиной H и W, причём эти прямоугольники между собой не пересекаются. Стороны прямоугольников не обязательно параллельны координатным осям.
Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных его точек минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости A(x1, y1) и B(x2, y2) вычисляется по формуле:
В файле A хранятся данные о звёздах двух кластеров, где H = 6, W = 4,5 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Значения даны в условных единицах. Известно, что количество звёзд не превышает 10 000.
В файле Б хранятся данные о звёздах трёх кластеров, где H = 6, W = 5 для каждого кластера. Известно, что количество звёзд не превышает 10 000.
Структура хранения информации в файле Б аналогична структуре в файле А.
Известно, что в файле Б имеются координаты ровно трёх «лишних» точек, представляющих аномалии, которые возникли в результате помех при передаче данных. Эти три точки не относятся ни к одному из кластеров, их учитывать не нужно.
Для файла А определите координаты центра каждого кластера, затем найдите два числа: Px — минимальную из абсцисс центров кластеров и Py — минимальную из ординат центров кластеров.
Для файла Б определите координаты центра каждого кластера, затем найдите два числа: Q1 — расстояние между центрами кластеров с минимальным и максимальным количеством точек и Q2 — максимальное расстояние от центра кластера до точки этого же кластера среди всех кластеров.
Гарантируется, что во всех кластерах количество точек различно.
В ответе запишите четыре числа: в первой строке — сначала целую часть абсолютной величины произведения Px × 10 000, затем целую часть абсолютной величины произведения Py × 10 000; во второй строке — сначала целую часть произведения Q1 × 10 000, затем целую часть произведения Q2 × 10 000.
Возможные данные одного из файлов проиллюстрированы графиком.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких что точки каждого подмножества лежат внутри прямоугольника со сторонами длиной H и W, причём эти прямоугольники между собой не пересекаются. Стороны прямоугольников не обязательно параллельны координатным осям.
Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.
Будем называть антицентром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера максимальна. Для каждого кластера гарантируется единственность его антицентра. Расстояние между двумя точками А (х1, y1) и B (х2, y2) на плоскости вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где Н = 8, W = 4 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата х, затем координата у. Значения даны в условных единицах. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где Н = 6, W = 7 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации о звёздах в файле Б аналогична структуре в файле А.
Известно, что в файле Б имеются координаты ровно трёх «лишних» точек, представляющих аномалии, которые возникли в результате помех при передаче данных. Эти три точки не относятся ни к одному из кластеров, их учитывать не нужно.
Для файла А определите координаты антицентра каждого кластера, затем вычислите два числа: P1 — сумма абсциссы и ординаты антицентра кластера с наименьшим количеством точек, и P2 — сумма абсциссы и ординаты антицентра кластера с наибольшим количеством точек. Гарантируется, что во всех кластерах количество точек различно.
Для файла Б определите координаты антицентра каждого кластера, затем вычислите два числа: Qx — абсциссу наиболее отдалённого антицентра кластера от начала координат, и Qy — ординату ближайшего антицентра кластера к началу координат.
В ответе запишите четыре числа: в первой строке — сначала целую часть абсолютной величины произведения P1 × 10 000, затем целую часть абсолютной величины произведения P2 × 10 000; во второй строке — сначала целую часть произведения Qx × 10 000, затем целую часть произведения Qy × 10 000.
Возможные данные одного из файлов проиллюстрированы графиком.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких что точки каждого подмножества лежат внутри прямоугольника со сторонами длиной H и W, причём эти прямоугольники между собой не пересекаются. Стороны прямоугольников не обязательно параллельны координатным осям.
Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.
Будем называть антицентром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера максимальна. Для каждого кластера гарантируется единственность его антицентра. Расстояние между двумя точками А (х1, y1) и B (х2, y2) на плоскости вычисляется по формуле:
В файле А хранятся координаты точек двух кластеров, где Н = 8, W = 4 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата х, затем координата у. Значения даны в условных единицах. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где Н = 6, W = 7 для каждого кластера. Известно, что количество точек не превышает 10 000.
Структура хранения информации о звёздах в файле Б аналогична структуре в файле А.
Известно, что в файле Б имеются координаты ровно трёх «лишних» точек, представляющих аномалии, которые возникли в результате помех при передаче данных. Эти три точки не относятся ни к одному из кластеров, их учитывать не нужно.
Для файла А определите координаты центра каждого кластера, затем вычислите два числа: P1 — сумма абсциссы и ординаты центра кластера с наименьшим количеством точек, и P2 – сумма абсциссы и ординаты центра кластера с наибольшим количеством точек. Гарантируется, что во всех кластерах количество точек различно.
Для файла Б определите координаты центра каждого кластера, затем вычислите два числа: Qx — абсциссу наиболее отдалённого центра кластера от начала координат, и Qy — ординату ближайшего центра кластера к началу координат.
В ответе запишите четыре числа: в первой строке — сначала целую часть абсолютного значения произведения P1 × 10 000, затем целую часть абсолютного значения произведения P2 × 10 000; во второй строке – сначала целую часть абсолютного значения произведения Qx × 10 000, затем целую часть абсолютного значения произведения Qy × 10 000.
Возможные данные одного из файлов иллюстрированы графиком.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких что точки каждого подмножества лежат внутри прямоугольника со сторонами
Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.
Диаметром кластера назовём максимальное расстояние между двумя точками в кластере. Для каждого кластера гарантируется, что диаметр образует единственная пара точек. Расстояние между двумя точками на плоскости A(x1; y1) и B(x2; y2) вычисляется по формуле:
В файле А хранятся данные о звёздах двух кластеров, где H = 3, W = 4 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Значения даны в условных единицах. Известно, что количество звёзд не превышает 1000.
В файле Б хранятся данные о звёздах трёх кластеров, где H = 6, W = 5 для каждого кластера. Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звёздах в файле Б аналогична файлу А.
Известно, что в файле Б имеются координаты ровно трёх «лишних» точек, являющихся аномалиями, возникшими в результате помех при передаче данных. Эти три точки не относятся ни к одному из кластеров, их учитывать не нужно.
Для файла А найдите пары точек, которые образуют диаметр каждого кластера. Затем вычислите два числа: Px — минимальную из сумм абсцисс этих точек для всех кластеров и Py — минимальную из сумм ординат этих точек для всех кластеров. Для файла Б найдите два числа: Q1 — диаметр кластера с минимальным количеством точек и Q2 — максимальное расстояние от точки, образующей диаметр одного кластера, до точки, образующей диаметр другого кластера.
Гарантируется, что во всех кластерах количество точек различно.
В ответе запишите четыре числа: в первой строке — сначала целую часть абсолютного значения произведения Px × 10 000, затем целую часть абсолютного значения произведения Py × 10 000; во второй строке — сначала целую часть произведения Q1 × 10 000, затем целую часть произведения Q2 × 10 000.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию.
Для выполнения задания используйте данные из прилагаемого файла.
Ответ:
Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких что точки каждого подмножества лежат внутри прямоугольника со сторонами
Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.
Диаметром кластера назовём максимальное расстояние между двумя точками в кластере. Для каждого кластера гарантируется, что диаметр образует единственная пара точек. Расстояние между двумя точками на плоскости A(x1; y1) и B(x2; y2) вычисляется по формуле:
В файле А хранятся данные о звёздах двух кластеров, где H = 3, W = 4 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Значения даны в условных единицах. Известно, что количество звёзд не превышает 1000.
В файле Б хранятся данные о звёздах трёх кластеров, где H = 6, W = 5 для каждого кластера. Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звёздах в файле Б аналогична файлу А.
Известно, что в файле Б имеются координаты ровно трёх «лишних» точек, являющихся аномалиями, возникшими в результате помех при передаче данных. Эти три точки не относятся ни к одному из кластеров, их учитывать не нужно.
Для файла А найдите пары точек, которые образуют диаметр каждого кластера. Затем вычислите два числа: Px — максимальную из сумм абсцисс этих точек для всех кластеров и Py — максимальную из сумм ординат этих точек для всех кластеров. Для файла Б найдите два числа: Q1 — диаметр кластера с максимальным количеством точек и Q2 — максимальное расстояние от точки, образующей диаметр одного кластера, до точки, образующей диаметр другого кластера.
Гарантируется, что во всех кластерах количество точек различно.
В ответе запишите четыре числа: в первой строке — сначала целую часть абсолютного значения произведения Px × 10 000, затем целую часть абсолютного значения произведения Py × 10 000; во второй строке — сначала целую часть произведения Q1 × 10 000, затем целую часть произведения Q2 × 10 000.
Возможные данные одного из файлов иллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию.
Для выполнения задания используйте данные из прилагаемого файла.
Ответ: