Каталог заданий.
Одна куча
Версия для печати и копирования в MS Word
1
Тип 19 № 27802
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня либо уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 75 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 68.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 68 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 67.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

2
Тип 19 № 27808
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или три камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 18 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 42.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 42 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 мень­ше или равно S мень­ше или равно 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

3
Тип 19 № 27811
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 48.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 48 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 мень­ше или равно S мень­ше или равно 47.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

4
Тип 19 № 27817
i

Два иг­ро­ка, Паша и Вася, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Паша. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 69. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 69 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 68.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Вася вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Паши. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

5
Тип 19 № 27820
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень или

до­ба­вить в кучу два камня или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 41. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 42 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы сле­ду­ю­ще­го стра­те­гии иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

6
Тип 19 № 27826
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 65. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 65 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 64.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

7
Тип 19 № 27835
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 12 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 54. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 55 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 54.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

8
Тип 19 № 27844
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень, или

до­ба­вить в кучу три камня, или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11, 13 или 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 49. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 50 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 49.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

9
Тип 19 № 27956
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 17 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 56. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 56 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 55.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

10
Тип 19 № 28038
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 19 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 41.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 41 ка­мень или боль­ше.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 40.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

11
Тип 19 № 28041
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или пять кам­ней или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16, 20 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 42.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 42 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 41.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может

встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

12
Тип 19 № 28083
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень либо уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16 или 30 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 26.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 26 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 25.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может

вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

13
Тип 19 № 28087
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или из 20 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 53. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 54 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 53.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы сле­ду­ю­ще­го стра­те­гии иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

14
Тип 19 № 28093
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в кучу один ка­мень или

уве­ли­чить ко­ли­че­ство кам­ней в куче в че­ты­ре раза.

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или из 40 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 64. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 65 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 64.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы сле­ду­ю­ще­го стра­те­гии иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

15
Тип 19 № 28099
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, имея кучу из 15 кам­ней, за один ход можно по­лу­чить кучу из 16 или 45 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 38. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 38 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 37.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

16
Тип 19 № 28105
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

        до­ба­вить в кучу один ка­мень (дей­ствие А) или

        утро­ить ко­ли­че­ство кам­ней в куче, а затем убрать из кучи 2 камня (дей­ствие Б).

На­при­мер, имея кучу из 20 кам­ней, за один ход можно по­лу­чить кучу из 21 камня или из 58 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 39. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 40 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 2 ≤ S ≤ 39.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

17
Тип 19 № 28108
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

        до­ба­вить в кучу один ка­мень (дей­ствие А) или

        утро­ить ко­ли­че­ство кам­ней в куче, а затем убрать из кучи 2 камня (дей­ствие Б).

На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или 28 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 30. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 31 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 2 ≤ S ≤ 30.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

18
Тип 19 № 28111
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может: до­ба­вить в кучу один ка­мень (дей­ствие А) или утро­ить ко­ли­че­ство кам­ней в куче, а затем до­ба­вить ещё один ка­мень (дей­ствие Б). На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или 31 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 31. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 32 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 31.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

19
Тип 19 № 28114
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может: до­ба­вить в кучу один ка­мень (дей­ствие А) или утро­ить ко­ли­че­ство кам­ней в куче, а затем убрать из кучи один ка­мень (дей­ствие Б). На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или 29 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 32. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 33 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 32.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

20
Тип 19 № 28125
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в шесть раз. На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или 60 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче пре­вы­ша­ет 365. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 366 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 365.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

21
Тип 19 № 28227
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу 1 ка­мень или до­ба­вить в кучу 10 кам­ней. На­при­мер, имея кучу из 7 кам­ней, за один ход можно по­лу­чить кучу из 8 или 17 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 52. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 52 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 51.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

22
Тип 19 № 28236
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или воз­ве­сти ко­ли­че­ство кам­ней в квад­рат. На­при­мер, имея кучу из 7 кам­ней, за один ход можно по­лу­чить кучу из 8 или 49 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся 100 или более. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 100 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 < S < 99.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

23
Тип 19 № 28239
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в пять раз. На­при­мер, имея кучу из 10 кам­ней, за один ход можно по­лу­чить кучу из 11 или 50 кам­ней. У каж­до­го иг­ро­ка, чтобы де­лать ходы, есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 200. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 201 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 200.

Го­во­рят, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

24

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 29. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 29 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 28.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

25
Тип 19 № 38953
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 46. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 46 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 45.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

26
Тип 19 № 40735
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, до­ба­вить два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. При этом нель­зя по­вто­рять ход, ко­то­рый толь­ко что сде­лал вто­рой игрок.

На­при­мер, если в на­ча­ле игры в куче 3 камня, Петя может пер­вым ходом по­лу­чить кучу из 4, 5 или 6 кам­ней. Если Петя по­лу­чил кучу из 5 кам­ней (до­ба­вил 2 камня), то сле­ду­ю­щим ходом Ваня может по­лу­чить 6 или 10 кам­ней. По­лу­чить 7 кам­ней Ваня не может, так как для этого нужно до­ба­вить 2 камня, а такой ход толь­ко что сде­лал Петя.

Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 34. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 34 или боль­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, 1 ⩽ S ⩽ 33.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

27
Тип 19 № 48440
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, до­ба­вить два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. При этом не раз­ре­ша­ет­ся де­лать ход, после ко­то­ро­го ко­ли­че­ство кам­ней в куче будет де­лить­ся на 3.

На­при­мер, если в на­ча­ле игры в куче 4 камня, Петя может пер­вым ходом по­лу­чить кучу из 5 или из 8 кам­ней. До­ба­вить два камня Петя не может, так как в этом слу­чае в куче ста­нет 6 кам­ней, а 6 де­лит­ся на 3.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 103.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 103 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 101, S не де­лит­ся на 3.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня смо­жет вы­иг­рать своим пер­вым ходом.


Ответ:

28
Тип 19 № 55815
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня, либо уве­ли­чить ко­ли­че­ство кам­ней в куче в че­ты­ре раза. У каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней, чтобы де­лать ходы.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 78.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу из 78 или более камня.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 77.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Ваня может вы­иг­рать своим пер­вым ходом после лю­бо­го хода Пети.


Ответ:

29
Тип 19 № 57426
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или че­ты­ре камня либо уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 43.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, со­сто­я­щую из 43 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 42.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

30
Тип 19 № 59724
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один или пять кам­ней либо уве­ли­чить ко­ли­че­ство кам­ней в куче в че­ты­ре раза. У каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней, чтобы де­лать ходы.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 473.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу из 473 кам­ней или боль­ше.

В на­чаль­ный мо­мент в куче было S кам­ней; 1 ≤ S ≤ 472.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

31
Тип 19 № 59765
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу два или три камня, или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней. На­при­мер, имея кучу из 13 кам­ней, за один ход можно по­лу­чить кучу из 15, 16 или 39 кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 89. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 89 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было 1 ≤ S ≤ 88. Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

32
Тип 19 № 61365
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза, если оно нечётное, или в пол­то­ра раза, если оно чётное.

На­при­мер, если в куче 5 кам­ней, то за один ход можно по­лу­чить 6 или 10 кам­ней, а если в куче 6 кам­ней, то за один ход можно по­лу­чить 7 или 9 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче до­сти­га­ет 108. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 108 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, 1 ≤ S ≤ 107.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

33
Тип 19 № 63035
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. В игре раз­ре­ше­но де­лать сле­ду­ю­щие ходы:

—  до­ба­вить в кучу один ка­мень;

—  если ко­ли­че­ство кам­ней в куче чётно, до­ба­вить по­ло­ви­ну име­ю­ще­го­ся ко­ли­че­ства;

—  если ко­ли­че­ство кам­ней в куче крат­но трём, до­ба­вить треть име­ю­ще­го­ся ко­ли­че­ства;

—  если ко­ли­че­ство кам­ней в куче не крат­но ни двум, ни трём, удво­ить кучу.

На­при­мер, если в куче 5 кам­ней, то за один ход можно по­лу­чить 6 или 10 кам­ней, а если в куче 6 кам­ней, то за один ход можно по­лу­чить 7, или 8, или 9 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче до­сти­га­ет 96.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 96 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, 1 ≤ S ≤ 95.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

34
Тип 19 № 64904
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. В игре раз­ре­ше­но де­лать сле­ду­ю­щие ходы:

—  убрать из кучи один ка­мень;

—  если ко­ли­че­ство кам­ней в куче чётно, убрать по­ло­ви­ну име­ю­ще­го­ся ко­ли­че­ства;

—  если ко­ли­че­ство кам­ней в куче крат­но трём, убрать треть име­ю­ще­го­ся ко­ли­че­ства.

На­при­мер, если в куче 4 камня, то за один ход можно по­лу­чить 2 или 3 камня, а если в куче 6 кам­ней, то за один ход можно по­лу­чить 3, 4 или 5 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся мень­ше 10.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет мень­ше 10 кам­ней.

В на­ча­ле игры в куче было S кам­ней, S ≥ 10.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

35
Тип 19 № 68252
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. Если в куче n кам­ней и число n крат­но k (k > 1), то за один ход раз­ре­ша­ет­ся до­ба­вить в кучу n/k кам­ней.

На­при­мер, если в куче 12 кам­ней, то за один ход можно до­ба­вить 1 (12/12), 2 (12/6), 3 (12/4), 4 (12/3) или 6 (12/2) кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся боль­ше 45.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет боль­ше 45 кам­ней.

В на­ча­ле игры в куче было S кам­ней, S ≤ 45.

Ука­жи­те ко­ли­че­ство таких зна­че­ний S, при ко­то­рых Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

36
Тип 19 № 70546
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может: убрать из кучи два камня или убрать из кучи пять кам­ней или умень­шить ко­ли­че­ство кам­ней в куче в три раза (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

На­при­мер, из кучи в 20 кам­ней за один ход можно по­лу­чить кучу из 18, 15 или 6 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 19.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 19 или мень­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней, S ≥ 20.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

37
Тип 19 № 72577
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может вы­пол­нить любое из сле­ду­ю­щих трёх дей­ствий:

1)  убрать из кучи один ка­мень;

2)  если ко­ли­че­ство кам­ней в куче крат­но трём, умень­шить его в три раза, в про­тив­ном слу­чае убрать из кучи два камня;

3)  если ко­ли­че­ство кам­ней в куче крат­но пяти, умень­шить его в пять раз, в про­тив­ном слу­чае убрать из кучи три камня.

На­при­мер, если в куче 12 кам­ней, то за один ход можно по­лу­чить 11, 4 или 9 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 19.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 19 или мень­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней,  S боль­ше 19.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

38
Тип 19 № 73845
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может вы­пол­нить любое из сле­ду­ю­щих дей­ствий:

1)  убрать из кучи пять кам­ней;

2)  если ко­ли­че­ство кам­ней в куче чётно, умень­шить его в два раза;

3)  если ко­ли­че­ство кам­ней в куче крат­но трём, умень­шить его в три раза;

4)  если ко­ли­че­ство кам­ней в куче нечётно и не крат­но трём, до­ба­вить один ка­мень.

На­при­мер, если в куче 12 кам­ней, то за один ход можно по­лу­чить 7, 6 или 4 камня, а если в куче 11 кам­ней, то за один ход можно по­лу­чить 6 или 12 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 19.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 19 или мень­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, S > 19.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

39
Тип 19 № 75256
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. Если ко­ли­че­ство кам­ней в куче де­лит­ся на целое k (2 ≤ k ≤ 9), то игрок может убрать из кучи k кам­ней. Если ко­ли­че­ство кам­ней в куче не де­лит­ся ни на одно из ука­зан­ных чисел, игрок уби­ра­ет один ка­мень, после чего вы­пол­ня­ет ход по опи­сан­но­му выше пра­ви­лу.

 

На­при­мер, если в куче 12 кам­ней, то за один ход можно убрать 2, 3, 4 или 6 кам­ней, а если в куче 11 кам­ней, то игрок за один ход сна­ча­ла уби­ра­ет один ка­мень (остаётся 10), а затем уби­ра­ет 2 или 5 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 15.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 15 или мень­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, S > 15.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

40
Тип 19 № 76122
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может: убрать из кучи три камня, или убрать из кучи семь кам­ней, или умень­шить ко­ли­че­ство кам­ней в куче в че­ты­ре раза (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

На­при­мер, из кучи в 21 ка­мень за один ход можно по­лу­чить кучу из 18, 14 или 5 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 21. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 21 или мень­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней,  S боль­ше или равно 22.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

41
Тип 19 № 76124
i

Для игры, опи­сан­ной в за­да­нии 19, най­ди­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

— у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

— у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым

Если най­де­но не­сколь­ко зна­че­ний S, в от­ве­те за­пи­ши­те наи­мень­шее из них.


Ответ:

42
Тип 19 № 76687
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. Если ко­ли­че­ство кам­ней в куче де­лит­ся на целое k, то игрок может до­ба­вить в кучу k кам­ней.

На­при­мер, если в куче 6 кам­ней, то за один ход можно до­ба­вить 1, 2, 3 или 6 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 91.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 92 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, S < 92.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

43
Тип 19 № 76716
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. Если ко­ли­че­ство кам­ней в куче де­лит­ся на целое k, то игрок может до­ба­вить в кучу k кам­ней.

На­при­мер, если в куче 6 кам­ней, то за один ход можно до­ба­вить 1, 2, 3 или 6 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся более 111.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 112 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, S < 112.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

44
Тип 19 № 81485
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

— убрать из кучи 3 камня;

— убрать из кучи 6 кам­ней;

— умень­шить ко­ли­че­ство кам­ней в куче в 3 раза (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

На­при­мер, из кучи в 20 кам­ней за один ход можно по­лу­чить кучу из 17, 14 или 6 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 25. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу из 25 или мень­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней,  S боль­ше или равно 26.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом. Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. может вы­иг­рать своим пер­вым ходом.


Ответ:

45
Тип 19 № 83149
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

—  убрать из кучи 3 камня,

—  умень­шить ко­ли­че­ство кам­ней в куче в 5 раз (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 505.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший в куче 505 кам­ней или мень­ше.

В на­чаль­ный мо­мент в куче было S кам­ней; S > 505.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Ваня может вы­иг­рать за один ход при не­удач­ном ходе Пети.


Ответ:

46
Тип 19 № 83177
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

—  убрать из кучи 4 камня,

—  умень­шить ко­ли­че­ство кам­ней в куче в 5 раз (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 537.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший в куче 537 кам­ней или мень­ше.

В на­чаль­ный мо­мент в куче было S кам­ней; S > 537.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Ваня может вы­иг­рать за один ход при не­удач­ном ходе Пети.


Ответ:

47
Тип 19 № 84681
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу 2 или 3 камня либо уве­ли­чить ко­ли­че­ство кам­ней в куче в 3 раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 414.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, со­сто­я­щую из 414 или более кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней,  1 мень­ше или равно S мень­ше или равно 413.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те сумму таких зна­че­ний S, при ко­то­рых Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:

48
Тип 19 № 84713
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу 2 или 3 камня, либо уве­ли­чить ко­ли­че­ство кам­ней в куче в 2 раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 313.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший кучу, со­сто­я­щую из 313 или более кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней,  1 мень­ше или равно S мень­ше или равно 312.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те сумму таких зна­че­ний S, при ко­то­рых Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.