Каталог заданий.
Системы логических уравнений, содержащие неоднотипные уравнения
Версия для печати и копирования в MS Word
1
Тип Д23 № 7468
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x8, y1, y2, … y8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1 ∨ x2) ∧ ((x1 ∧ x2) → x3) ∧ (¬x1 ∨ y1) = 1

(x2 ∨ x3) ∧ ((x2 ∧ x3) → x4) ∧ (¬x2 ∨ y2) = 1

(x6 ∨ x7) ∧ ((x6 ∧ x7) → x8) ∧ (¬x6 ∨ y6) = 1

(x7 ∨ x8) ∧ (¬x7 ∨ y7) = 1

(¬x8 ∨ y8) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x8, y1, y2, … y8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

2
Тип Д23 № 7768
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x7, y1, y2, … y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1 ∨ x2) ∧ ((x1 ∧ x2) →x3) ∧ ¬ (x1 ∧ y1) = 1

(x2 ∨ x3) ∧ ((x2 ∧ x3) →x4) ∧ ¬ (x2 ∧ y2) = 1

...

(x5 ∨ x6) ∧ ((x5 ∧ x6) →x7) ∧ ¬ (x5 ∧ y5) = 1

(x6 ∨ x7) ∧ ¬(x6 ∧ y6) = 1

x7 ∧ y7 = 0

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

3
Тип Д23 № 16050
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x7, y1, y2, ...y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(y1 → (y2x1)) ∧ (x1x2) = 1

(y2 → (y3x2)) ∧ (x2x3) = 1

                        …

(y6 → (y7x6)) ∧ (x6x7) = 1

y7x7 = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x7, y1, y2, ...y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

4
Тип Д23 № 16826
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2,…, x8, y1, y2, ..., y8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

((x1y1) → (x2y2)) ∧ (x1y1) = 1

((x2y2) → (x3y3)) ∧ (x2y2) = 1

...

((x7y7) → (x8y8)) ∧ (x7y7) = 1

(x8y8) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x8, y1, y2, ..., y8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

5
Тип Д23 № 16899
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2,…, x7, y1, y2, ..., y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

((x1y1) → (x2y2)) ∧ (x1y1) = 1

((x2y2) → (x3y3)) ∧ (x2y2) = 1

...

((x6y6) → (x7y7)) ∧ (x6y6) = 1

(x7y7) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

6
Тип Д23 № 18829
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ..., x6, y1, y2, ..., y6, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1 ∧ ¬y1) ∨ (y2 ∧ ¬x2) ∨ (x1y2) = 0

(x2 ∧ ¬y2) ∨ (y3 ∧ ¬x3) ∨ (x2y3) = 0

(x3 ∧ ¬y3) ∨ (y4 ∧ ¬x4) ∨ (x3y4) = 0

(x4 ∧ ¬y4) ∨ (y5 ∧ ¬x5) ∨ (x4y5) = 0

(x5 ∧ ¬y5) ∨ (y6 ∧ ¬x6) ∨ (x5y6) = 0

x6 ∧ ¬y6 = 0

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x6, y1, y2, ..., y6, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

7
Тип Д23 № 27022
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x8, y1, y2, ...y8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1x2) ∧ (y2y1) = 1

(x2x3) ∧ (y3y2) = 1

                        …

(x7x8) ∧ (y8y7) = 1

y3x3 = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x8, y1, y2, ...y8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

8
Тип Д23 № 27281
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1x2) → (x3x4) = 1

(x3x4) → (x5x6) = 1

(x5x6) → (x7x8) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

9
Тип Д23 № 27308
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x10, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1x2) → (x3x4) = 1

(x3x4) → (x5x6) = 1

(x5x6) → (x7x8) = 1

(x7x8) → (x9x10) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

10
Тип Д23 № 28698
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x8, y1, y2, ...y8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1x2) ∧ (y2y1) = 1

(x2x3) ∧ (y3y2) = 1

                        …

(x7x8) ∧ (y8y7) = 1

y8x8 = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x8, y1, y2, ...y8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:

11
Тип Д23 № 29130
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x9, y1, y2, ...y9, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1x2) ∧ (y2y1) = 1

(x2x3) ∧ (y3y2) = 1

                        …

(x8x9) ∧ (y9y8) = 1

y9x9 = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x9, y1, y2, ...y9, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.