СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости


Каталог заданий.
Посимвольное двоичное преобразование

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 6 № 8094

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает 43 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.

Источник: ЕГЭ 05.05.2015. До­сроч­ная волна.

2
Задание 6 № 9357

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

    а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

      б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше 125. В ответе это число запишите в десятичной системе счисления.

 

ИЛИ

 

У исполнителя Калькулятор две команды, которым присвоены номера:

1. прибавь 2,

2. умножь на 5.

Выполняя первую из них, Калькулятор прибавляет к числу на экране 2, а выполняя вторую, умножает его на 5.

Например, программа 2121 – это программа

умножь на 5,

прибавь 2,

умножь на 5,

прибавь 2,

которая преобразует число 1 в число 37.

Запишите порядок команд в программе, которая преобразует число 2 в число 24 и содержит не более четырёх команд. Указывайте лишь номера команд.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2016 по информатике.

3
Задание 6 № 10468

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 10000 преобразуется в запись 100001;

б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше 77. В ответе это число запишите в десятичной системе счисления.


4
Задание 6 № 10495

На вход ал­го­рит­ма подаётся на­ту­раль­ное число N. Ал­го­ритм стро­ит по нему новое число R сле­ду­ю­щим об­ра­зом.

1. Стро­ит­ся дво­ич­ная за­пись числа N.

2. К этой за­пи­си до­пи­сы­ва­ют­ся спра­ва ещё два раз­ря­да по сле­ду­ю­ще­му пра­ви­лу:

а) скла­ды­ва­ют­ся все цифры дво­ич­ной за­пи­си, и оста­ток от де­ле­ния суммы на 2 до­пи­сы­ва­ет­ся в конец числа (спра­ва). На­при­мер, за­пись 10000 пре­об­ра­зу­ет­ся в за­пись 100001;

б) над этой за­пи­сью про­из­во­дят­ся те же дей­ствия — спра­ва до­пи­сы­ва­ет­ся оста­ток от де­ле­ния суммы цифр на 2.

По­лу­чен­ная таким об­ра­зом за­пись (в ней на два раз­ря­да боль­ше, чем в за­пи­си ис­ход­но­го числа N) яв­ля­ет­ся дво­ич­ной за­пи­сью ис­ко­мо­го числа R.

Ука­жи­те такое наи­мень­шее число N, для ко­то­ро­го ре­зуль­тат ра­бо­ты ал­го­рит­ма боль­ше 97. В от­ве­те это число за­пи­ши­те в де­ся­тич­ной си­сте­ме счис­ле­ния.


5
Задание 6 № 13733

На вход ал­го­рит­ма подаётся на­ту­раль­ное число N. Ал­го­ритм стро­ит по нему новое число R сле­ду­ю­щим об­ра­зом.

1) Стро­ит­ся дво­ич­ная за­пись числа N.

2) К этой за­пи­си до­пи­сы­ва­ют­ся спра­ва ещё два раз­ря­да по сле­ду­ю­ще­му пра­ви­лу:

     а) скла­ды­ва­ют­ся все цифры дво­ич­ной за­пи­си числа N, и оста­ток от де­ле­ния суммы на 2 до­пи­сы­ва­ет­ся в конец числа (спра­ва). На­при­мер, за­пись 11100 пре­об­ра­зу­ет­ся в за­пись 111001;

     б) над этой за­пи­сью про­из­во­дят­ся те же дей­ствия – спра­ва до­пи­сы­ва­ет­ся оста­ток от де­ле­ния суммы её цифр на 2.

По­лу­чен­ная таким об­ра­зом за­пись (в ней на два раз­ря­да боль­ше, чем в за­пи­си ис­ход­но­го числа N) яв­ля­ет­ся дво­ич­ной за­пи­сью ис­ко­мо­го числа R.

Ука­жи­те ми­ни­маль­ное число R, ко­то­рое пре­вы­ша­ет число 83 и может яв­лять­ся ре­зуль­та­том ра­бо­ты дан­но­го ал­го­рит­ма. В от­ве­те это число за­пи­ши­те в де­ся­тич­ной си­сте­ме счис­ле­ния.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2018 по информатике.

Пройти тестирование по этим заданиям