Задания
Версия для печати и копирования в MS Word
Тип 5 № 79718
i

На вход ал­го­рит­ма подаётся на­ту­раль­ное число N. Ал­го­ритм стро­ит по нему новое число R сле­ду­ю­щим об­ра­зом.

1.  Стро­ит­ся дво­ич­ная за­пись числа N.

2.  К этой за­пи­си до­пи­сы­ва­ют­ся спра­ва ещё два раз­ря­да по сле­ду­ю­ще­му пра­ви­лу:

а)  скла­ды­ва­ют­ся все цифры дво­ич­ной за­пи­си числа N, и оста­ток от де­ле­ния суммы на 2 до­пи­сы­ва­ет­ся в конец числа (спра­ва). На­при­мер, за­пись 11100 пре­об­ра­зу­ет­ся в за­пись 111001;

б)  над этой за­пи­сью про­из­во­дят­ся те же дей­ствия  — спра­ва до­пи­сы­ва­ет­ся оста­ток от де­ле­ния суммы её цифр на 2.

По­лу­чен­ная таким об­ра­зом за­пись (в ней на два раз­ря­да боль­ше, чем в за­пи­си ис­ход­но­го числа N) яв­ля­ет­ся дво­ич­ной за­пи­сью ис­ко­мо­го числа R.

На­при­мер, для ис­ход­но­го числа 1210  =  11002 ре­зуль­та­том яв­ля­ет­ся число 1100002  =  4810, а для ис­ход­но­го числа 710  =  1112 это число 111102  =  3010.

Ука­жи­те такое наи­мень­шее число N, для ко­то­ро­го ре­зуль­тат ра­бо­ты ал­го­рит­ма боль­ше числа 253.

В от­ве­те за­пи­ши­те это число в де­ся­тич­ной си­сте­ме счис­ле­ния.

Спрятать решение

Ре­ше­ние.

При­ведём ре­ше­ние на языке Python.

for n in range (1,100):

s = bin(n)[2:]

for i in range (2):

s += str(s.count('1') % 2)

r = int(s,2)

if r > 253:

print(n)

break

 

Ответ: 64.


Аналоги к заданию № 10468: 10495 27402 79718 Все

Источник: ЕГЭ—2025. До­сроч­ная волна 08.04.2025. Ва­ри­ант ФИПИ