СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
Информатика
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 6 № 8094

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает 43 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.

Решение.

Если в числе было нечётное количество единиц, то в конец допишется 10. Если чётное, то 00. Таким образом, нужно найти первое число, большее 43, у которого в двоичной записи чётное количество единиц, а на конце 10 или 00. Имеем:

4410 = 1011002,

4510 = 1011012,

4610 = 1011102.

 

Ответ: 46.

Источник: ЕГЭ 05.05.2015. Досрочная волна.