Каталог заданий.
Побитовая конъюнкция

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 15 № 9804
i

Обо­зна­чим через m & n по­раз­ряд­ную конъ­юнк­цию не­от­ри­ца­тель­ных целых чисел m и n.

Так, на­при­мер, 14 & 5  =  11102 & 01012  =  01002  =  4. Для ка­ко­го наи­мень­ше­го не­от­ри­ца­тель­но­го це­ло­го числа А фор­му­ла

x & 29 ≠ 0 → (x & 17 = 0 → x & А ≠ 0)

тож­де­ствен­но ис­тин­на (т. е. при­ни­ма­ет зна­че­ние 1 при любом не­от­ри­ца­тель­ном целом зна­че­нии пе­ре­мен­ной x)?


Аналоги к заданию № 9804: 34506 34508 34510 ... Все


2
Тип 15 № 34509
i

Обо­зна­чим через m&n по­раз­ряд­ную конъ­юнк­цию не­от­ри­ца­тель­ных целых чисел m и n.

Так, на­при­мер, 14&5  =  11102&01012  =  01002  =  4.

Для ка­ко­го наи­мень­ше­го не­от­ри­ца­тель­но­го це­ло­го числа А фор­му­ла

 левая круг­лая скоб­ка левая круг­лая скоб­ка x\28 не равно 0 пра­вая круг­лая скоб­ка \vee левая круг­лая скоб­ка x\45 не равно 0 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка arrow левая круг­лая скоб­ка левая круг­лая скоб­ка x\17=0 пра­вая круг­лая скоб­ка arrow левая круг­лая скоб­ка x\A не равно 0 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка

тож­де­ствен­но ис­тин­на (т. е. при­ни­ма­ет зна­че­ние 1 при любом не­от­ри­ца­тель­ном целом зна­че­нии пе­ре­мен­ной x)?


Аналоги к заданию № 34509: 34516 55602 55632 ... Все


3
Тип 15 № 34513
i

Обо­зна­чим через m&n по­раз­ряд­ную конъ­юнк­цию не­от­ри­ца­тель­ных целых чисел m и n.

На­при­мер, 14&5  =  11102 & 01012  =  01002  =  4.

Для ка­ко­го наи­мень­ше­го не­от­ри­ца­тель­но­го це­ло­го числа А фор­му­ла

x&33 = 0 → (x&45≠0 → x&А ≠ 0)

тож­де­ствен­но ис­тин­на (т. е. при­ни­ма­ет зна­че­ние 1 при любом не­от­ри­ца­тель­ном целом зна­че­нии пе­ре­мен­ной х)?


Аналоги к заданию № 34513: 34519 34520 35989 ... Все


4
Тип 15 № 34517
i

Обо­зна­чим через m&n по­раз­ряд­ную конъ­юнк­цию не­от­ри­ца­тель­ных целых чисел m и n.

Так, на­при­мер, 12&6  =  11002&01102  =  01002  =  4.

Для ка­ко­го наи­боль­ше­го це­ло­го числа А фор­му­ла

х&А не равно 0 → (x&10 = 0 → х&3 не равно 0)

тож­де­ствен­но ис­тин­на (т. е. при­ни­ма­ет зна­че­ние 1 при любом не­от­ри­ца­тель­ном целом зна­че­нии пе­ре­мен­ной x)?


Аналоги к заданию № 34517: 34518 Все


5
Тип 15 № 34521
i

Обо­зна­чим через m&n по­раз­ряд­ную конъ­юнк­цию не­от­ри­ца­тель­ных целых чисел m и n.

Так, на­при­мер, 14&5  =  11102&01012  =  01002  =  4.

Для ка­ко­го наи­боль­ше­го це­ло­го числа А фор­му­ла

x&51 = 0 ∨ (x&41 = 0 → x&А = 0)

тож­де­ствен­но ис­тин­на (т. е. при­ни­ма­ет зна­че­ние 1 при любом не­от­ри­ца­тель­ном целом зна­че­нии пе­ре­мен­ной x)?


Аналоги к заданию № 34521: 34522 Все


Пройти тестирование по этим заданиям