СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости


Каталог заданий.
Системы логических уравнений, содержащие неоднотипные уравнения

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 23 № 7468

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x8, y1, y2, … y8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1 ∨ x2) ∧ ((x1 ∧ x2) → x3) ∧ (¬x1 ∨ y1) = 1

(x2 ∨ x3) ∧ ((x2 ∧ x3) → x4) ∧ (¬x2 ∨ y2) = 1

(x6 ∨ x7) ∧ ((x6 ∧ x7) → x8) ∧ (¬x6 ∨ y6) = 1

(x7 ∨ x8) ∧ (¬x7 ∨ y7) = 1

(¬x8 ∨ y8) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x8, y1, y2, … y8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Источник: Де­мон­стра­ци­он­ная версия ЕГЭ—2015 по информатике.

2
Задание 23 № 7768

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x7, y1, y2, … y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1 ∨ x2) ∧ ((x1 ∧ x2) →x3) ∧ ¬ (x1 ∧ y1) = 1

(x2 ∨ x3) ∧ ((x2 ∧ x3) →x4) ∧ ¬ (x2 ∧ y2) = 1

...

(x5 ∨ x6) ∧ ((x5 ∧ x6) →x7) ∧ ¬ (x5 ∧ y5) = 1

(x6 ∨ x7) ∧ ¬(x6 ∧ y6) = 1

x7 ∧ y7 = 0

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Аналоги к заданию № 7768: 7795 Все


3
Задание 23 № 10397

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ... x9, y1, y2, ... y9, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям:

 

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ... x9, y1, y2, ... y9, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


Аналоги к заданию № 10397: 10424 Все


4
Задание 23 № 16050

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ...x7, y1, y2, ...y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(y1 → (y2x1)) ∧ (x1x2) = 1

(y2 → (y3x2)) ∧ (x2x3) = 1

                        …

(y6 → (y7x6)) ∧ (x6x7) = 1

y7x7 = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ...x7, y1, y2, ...y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2019 по информатике.

5
Задание 23 № 16826

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2,…, x8, y1, y2, ..., y8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

((x1y1) → (x2y2)) ∧ (x1y1) = 1

((x2y2) → (x3y3)) ∧ (x2y2) = 1

...

((x7y7) → (x8y8)) ∧ (x7y7) = 1

(x8y8) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x8, y1, y2, ..., y8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


6
Задание 23 № 16899

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2,…, x7, y1, y2, ..., y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

((x1y1) → (x2y2)) ∧ (x1y1) = 1

((x2y2) → (x3y3)) ∧ (x2y2) = 1

...

((x6y6) → (x7y7)) ∧ (x6y6) = 1

(x7y7) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.


7
Задание 23 № 18829

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, ..., x6, y1, y2, ..., y6, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1 ∧ ¬y1) ∨ (y2 ∧ ¬x2) ∨ (x1y2) = 0

(x2 ∧ ¬y2) ∨ (y3 ∧ ¬x3) ∨ (x2y3) = 0

(x3 ∧ ¬y3) ∨ (y4 ∧ ¬x4) ∨ (x3y4) = 0

(x4 ∧ ¬y4) ∨ (y5 ∧ ¬x5) ∨ (x4y5) = 0

(x5 ∧ ¬y5) ∨ (y6 ∧ ¬x6) ∨ (x5y6) = 0

x6 ∧ ¬y6 = 0

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x6, y1, y2, ..., y6, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Источник: ЕГЭ по информатике 13.06.2019. Основная волна, Юг-Центр.

Пройти тестирование по этим заданиям