Вариант № 11213744

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.



Версия для печати и копирования в MS Word
1
Задания Д1 № 7916

Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённость которых приведена в таблице. Отсутствие числа в таблице значает, что прямой дороги между пунктами нет.

ABCDEF
A24816
B23
C43
D83353
E55
F1635

Определите длину кратчайшего пути между пунктами A и F, проходящего через пункт E и не проходящего через пункт B. Передвигаться можно только по указанным дорогам.


Ответ:

2
Тип 2 № 18550

Логическая функция F задаётся выражением ((yz) ∨ (¬xw)) ≡ (wz).

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.

Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.

 

Переменная 1Переменная 2Переменная 3Переменная 4Функция
????????????F
1001
00011
011

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение xy, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

Переменная 1Переменная 1Функция
??????F
010

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.


Ответ:

3
Тип 3 № 37415

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

3.xlsx

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

ID операцииДатаID магазинаАртикулТип операцииКоличество упаковок,
шт.
Цена,
руб./шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

АртикулОтделНаименованиеЕд. изм.Количество
в упаковке
Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

ID магазинаРайонАдрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите на сколько увеличилось количество упаковок яиц диетических, имеющихся в наличии в магазинах Заречного района за период с 1 по 10 июня.

В ответе запишите только число.


Ответ:

4
Тип 4 № 17323

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, В, Г, Й, К, Л. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б — 00, Г — 010, К — 101. Какое наименьшее количество двоичных знаков потребуется для кодирования слова БАЛАЛАЙКА?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


Ответ:

5
Тип 5 № 10282

Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам.

1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры.

2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей.

 

Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016.

Укажите наименьшее число, при обработке которого автомат выдаёт результат 723.


Ответ:

6
Задания Д6 № 9643

Определите значение переменной c после выполнения следующего фрагмента программы (записанного ниже на разных языках программирования). Ответ запишите в виде целого числа.

 

БейсикПаскаль

a = 20

b = 15

b = 3 * b - a

IF a > b THEN

c = 2 * a + b

ELSE

c = 2 * a - b

END IF

a := 20;

b := 15;

b := 3 * b - a;

if a > b then

c := 2 * a + b

else

c := 2 * a - b;

Си++Алгоритмический язык

a = 20;

b = 15;

b = 3 * b - a;

if (a > b)

c = 2 * a + b;

else

c = 2 * a - b;

a := 20

b := 15

b := 3 * b - a

если a > b

то c := 2 * a + b

иначе c := 2 * a - b

все

Python

a = 20

b = 15

b = 3 * b - a

if a > b:

    c = 2 * a + b

else:

    c = 2 * a - b


Ответ:

7
Тип 7 № 17373

Автоматическая фотокамера с 200 Кбайт видеопамяти производит растровые изображения c фиксированным разрешением и 8-цветной палитрой. Сколько цветов можно будет использовать в палитре, если увеличить видеопамять до 400 Кбайт?


Ответ:

8
Тип 8 № 18491

Ольга составляет 5-буквенные коды из букв О, Л, Ь, Г, А. Каждую букву нужно использовать ровно 1 раз, при этом Ь нельзя ставить первым и нельзя ставить после гласной. Сколько различных кодов может составить Ольга?


Ответ:

9
Тип 9 № 33511

Электронная таблица содержит результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите величину самого большого повышения температуры между двумя соседними измерениями. Ответ округлите до целого числа. Например, с 3:00 до 4:00 1 апреля температура повысилась на 1,4 градуса. Если это повышение окажется максимальным, в ответе надо записать 1.

Задание 9


Ответ:

10
Тип 10 № 29658

Определите, сколько раз в тексте произведения А. С. Пушкина «Капитанская дочка» встречается слово «дочка» или «Дочка». Другие формы этого слова («дочку», «дочки» и т. д.) учитывать не надо.

Задание 10


Ответ:

11
Тип 11 № 17331

Каждый сотрудник предприятия получает электронный пропуск, на котором записаны личный код сотрудника, код подразделения и некоторая дополнительная информация. Личный код состоит из 18 букв. Для формирования кодов используется 15 различных букв, каждая из которых может быть заглавной или строчной. Для записи кода на пропуске отведено минимально возможное целое число байт. При этом используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством бит. Код подразделения — целое трёхзначное число, он записан на пропуске как двоичное число и занимает минимально возможное целое число байт. Всего на пропуске хранится 30 байт данных. Сколько байт выделено для хранения дополнительных сведений об одном сотруднике? В ответе запишите только целое число — количество байт.


Ответ:

12
Тип 12 № 15924

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 

Цикл

ПОКА условие

    последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 101 единиц?

 

НАЧАЛО

    ПОКА нашлось (1111)

        заменить (1111, 22)

        заменить (222, 1)

    КОНЕЦ ПОКА

КОНЕЦ


Ответ:

13
Тип 13 № 23913

На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.

Какова длина самого длинного пути из города А в город М? Длиной пути считать количество дорог, составляющих этот путь.


Ответ:

14
Тип 14 № 17334

Значение выражения 2 · 2166 + 3 · 369 − 432 записали в системе счисления с основанием 6. Сколько цифр 5 содержится в этой записи?


Ответ:

15
Тип 15 № 15928

На числовой прямой задан отрезок A. Известно, что формула

((xA) → (x2 ≤ 81)) ∧ ((y2 ≤ 36) → (yA))

тождественно истинна при любых вещественных x и y. Какую наибольшую длину может иметь отрезок A?


Ответ:

16
Задания Д16 № 16440

Ниже на пяти языках программирования записан рекурсивный алгоритм F.

 

 

БейсикPython

SUB F(n)

    IF n < 8 THEN

         F(2 * n)

         PRINT N

         F(n + 3)

    END IF

END SUB

 

def F(n):

    if n < 8:

        F(2 * n)

        print(n)

        F(n + 3)

 

ПаскальАлгоритмический язык

procedure F(n: integer);

begin

    if n < 8 then begin

        F(2 * n);

        write(n);

        F(n + 3);

    end

end;

 

алг F(цел n)

нач

    если n < 8 то

        F(2 * n)

        вывод n

        F(n + 3)

    все

кон

 

С++

void F (int n)

{

     if (n < 8) {

        F (2 * n);

        std::cout << n;

        F (n + 3);

    }

}

 

 

 

Запишите подряд без пробелов и разделителей все числа, которые будут показаны на экране при выполнении вызова F(1). Числа должны быть записаны в том же порядке, в котором они выводятся на экран.


Ответ:

17
Тип 17 № 37337

В файле содержится последовательность из 10 000 натуральных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, у которых различные остатки от деления на d = 160 и хотя бы одно из чисел делится на p = 7, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

Пример входных данных:

168

7

320

328

Пример выходных данных для приведённого выше примера входных данных:

4 488

Пояснение: Из 4 чисел можно составить 6 пар. В данном случае условиям удовлетворяют пары: 168 и 320, 168 и 7, 320 и 7, 328 и 7. Максимальную сумму дает пара 168 и 320 — 488.

17.txt

Ответ:



18
Тип 18 № 33488

Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 8. Какую максимальную сумму могут иметь выбранные числа?

В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.

18.xlsx

Пример входных данных:

 

5,2
13,1
2,2
11,3
3,1
2,3

 

Для указанных входных данных ответом будет число 18.


Ответ:

19
Тип 19 № 27416

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 5 камней; такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (11, 5), (20, 5), (10, 6), (10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, при которой в кучах будет 77 или больше камней.

В начальный момент в первой куче было семь камней, во второй куче — S камней; 1 ≤ S ≤ 69.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна


Ответ:

20
Тип 20 № 27417

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 5 камней; такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (11, 5), (20, 5), (10, 6), (10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, при которой в кучах будет 77 или больше камней.

В начальный момент в первой куче было семь камней, во второй куче — S камней; 1 ≤ S ≤ 69.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.


Ответ:

21
Тип 21 № 27418

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 5 камней; такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (11, 5), (20, 5), (10, 6), (10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, при которой в кучах будет 77 или больше камней.

В начальный момент в первой куче было семь камней, во второй куче — S камней; 1 ≤ S ≤ 69.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.


Ответ:

22
Тип 22 № 16449

Ниже на пяти языках записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа a и b. Укажите наибольшее из таких чисел x, при вводе которых алгоритм печатает сначала 2, а потом 10.

 

 

БейсикPython

DIM X, A, B AS INTEGER

INPUT X

A = 0: B = 1

WHILE X > 0

    IF X MOD 2 > 0 THEN

        A = A + X MOD 12

    ELSE

        B = B * (X MOD 12)

    END IF

    X = X \ 12

WEND

PRINT A

PRINT B

 

x = int(input())

a=0; b=1

while x > 0:

    if x%2 > 0:

        a += x%12

    else:

        b *= x%12

    x = x // 12

print(a, b)

 

ПаскальАлгоритмический язык

var x, a, b: longint;

begin

    readln(x);

    a := 0; b := 1;

    while x > 0 do begin

        if x mod 2 > 0 then

            a := a + x mod 12

        else

            b := b * (x mod 12);

        x := x div 12;

    end;

    writeln(a); write(b);

end.

 

алг

нач

    цел x, a, b

    ввод x

    a := 0; b := 1

    нц пока x > 0

        если mod(x,2)>0

            то a := a + mod(x,12)

            иначе b := b*mod(x,12)

        все x := div(x,12)

    кц

    вывод a, нс, b

кон

 

С++

#include <iostream>

using namespace std;

int main()

{

    int x, a, b;

    cin >> x;

    a = 0; b = 1;

    while (x > 0) {

        if (x%2 > 0)

            a += x%12;

        else

            b *= x%12;

        x = x / 12;

    }

    cout << a << endl << b << endl;

    return 0;

}

 


Ответ:

23
Тип 23 № 15959

Исполнитель РазДваТри преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

1. Прибавить 1

2. Умножить на 2

3. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья умножает его на 3.

Программа для исполнителя РазДваТри — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 3 в число 50 и при этом траектория вычислений содержит число 15 и не содержит числа 33?

Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 6 траектория будет состоять из чисел 18, 19, 38.


Ответ:

24
Тип 24 № 29672

Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABC…Z). Определите количество строк, в которых буква E встречается чаще, чем буква A.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24


Ответ:

25
Тип 25 № 29673

Назовём нетривиальным делителем натурального числа его делитель, не равный единице и самому числу. Например, у числа 6 есть два нетривиальных делителя: 2 и 3. Найдите все натуральные числа, принадлежащие отрезку [123456789; 223456789] и имеющие ровно три нетривиальных делителя. Для каждого найденного числа запишите в ответе его наибольший нетривиальный делитель. Ответы расположите в порядке возрастания.

Например, в диапазоне [5; 16] ровно три различных нетривиальных делителя имеет число 16, поэтому для этого диапазона вывод на экране должна содержать следующие значения:

16 8

Ответ:



26
Тип 26 № 33198

Для перевозки партии грузов различной массы выделен грузовик, но его грузоподъёмность ограничена, поэтому перевезти сразу все грузы не удастся. Грузы массой от 200 до 210 кг грузят в первую очередь, гарантируется, что все такие грузы поместятся. На оставшееся после этого место стараются взять как можно больше грузов. Если это можно сделать несколькими способами, выбирают тот способ, при котором самый большой из выбранных грузов имеет наибольшую массу. Если и при этом условии возможно несколько вариантов, выбирается тот, при котором наибольшую массу имеет второй по величине груз, и т. д. Известны количество грузов, масса каждого из них и грузоподъёмность грузовика. Необходимо определить количество и общую массу грузов, которые будут вывезены при погрузке по вышеописанным правилам.

Входные данные.

Задание 26

Первая строка входного файла содержит два целых числа: N — общее количество грузов и M — грузоподъёмность грузовика в кг. Каждая из следующих N строк содержит одно целое число — массу груза в кг.

В ответе запишите два целых числа: сначала максимально возможное количество грузов, затем их общую массу.

Пример входного файла:

6 605

140

205

120

160

100

340

В данном случае сначала нужно взять груз массой 205 кг. После этого можно вывезти ещё максимум 3 груза. Это можно сделать тремя способами: 140 + 120 + 100, 140 + 160 + 100, 120 + 160 + 100. Выбираем способ, при котором вывозится груз наибольшей возможной массы. Таких способов два: 140 + 160 + 100 и 120 + 160 + 100. Из этих способов выбираем тот, при котором больше масса второго по величине груза, то есть 140 + 160 + 100. Всего получается 4 груза общей массой 605 кг. В ответе надо записать числа 4 и 605.

 

Ответ:



27
Тип 27 № 33199

Набор данных состоит из троек натуральных чисел. Необходимо распределить все числа на три группы, при этом в каждую группу должно попасть ровно одно число из каждой исходной тройки. Сумма всех чисел в первой группе должна быть чётной, во второй — нечётной. Определите максимально возможную сумму всех чисел в третьей группе.

Входные данные.

Файл A

Файл B

Первая строка входного файла содержит число N — общее количество троек в наборе. Каждая из следующих N строк содержит три натуральных числа, не превышающих 10 000.

Пример входного файла:

3

1 2 3

5 12 4

6 9 7

Для указанных данных искомая сумма равна 24, она соответствует такому распределению чисел по группам: (1, 5, 6), (2, 4, 7), (3, 12, 9).

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

Предупреждение: для обработки файла B не следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

 

Ответ:


Завершить тестирование, свериться с ответами, увидеть решения.