СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 20 № 3209

Ниже записана программа. Получив на вход число x , эта программа печатает два числа, L и M. Укажите наибольшее из таких чисел x, при вводе которых алгоритм печатает сначала 3, а потом 7.

 

 

БейсикPython

DIM X, L, M AS INTEGER

INPUT X

L = 0

M = 0

WHILE X > 0

L = L + 1

IF X MOD 2 = 0 THEN

    M = M + (X MOD 10) \ 2

ENDIF

X = X \ 10

WEND

PRINT L

PRINT M

x = int(input())

L = 0

M = 0

while x > 0:

    L += 1

    if x % 2 == 0:

        M = M + (x % 10) // 2

    x = x // 10

print(L)

print(M)

ПаскальАлгоритмический язык

var x, L, M: integer;

begin

    readln(x);

    L := 0;

    M := 0;

    while x > 0 do

    begin

        L := L + 1;

        if x mod 2 = 0 then

            M := M + (x mod 10) div 2;

        x := x div 10;

    end;

    writeln(L);

    writeln(M);

end.

алг

нач

    цел x, L, M

    ввод x

    L := 0

    M := 0

    нц пока x > 0

        L := L + 1

        если mod(x,2) = 0

            то

                M := M + div(mod(x,10), 2)

        все

        x := div(x,10)

    кц

    вывод L, нс, M

кон

Си++

 

#include <iostream>

using namespace std;

int main()

{

    int x, L, M;

    cin >> x;

    L = 0;

    M = 0;

    while (x > 0){

        L = L + 1;

        if(x % 2 == 0){

            M = M + (x % 10) / 2;

        }

        x = x / 10;

    }

    cout << L << endl << M endl;

}

 

Решение.

Рассмотрим цикл, число шагов которого зависит от изменения переменной x:

while x > 0 do begin

...

x:= x div 10;

end;

Т. к. оператор div оставляет только целую часть от деления, то при делении на 10 это равносильно отсечению последней цифры.

 

Из приведенного цикла видно, что на каждом шаге от десятичной записи x отсекается последняя цифра до тех пор, пока все цифры не будут отсечены, то есть x не станет равно 0; поэтому цикл выполняется столько раз, сколько цифр в десятичной записи введенного числа, при этом число L столько же раз увеличивается на 1. Следовательно, конечное значение L совпадает с числом цифр в x. Для того, чтобы L стало L=3, x должно быть трёхзначным.

 

Теперь рассмотрим оператор изменения M:

if x mod 2 = 0 then

  M:= M + (x mod 10) div 2;

end;

 

Оператор mod оставляет только остаток от деления, при делении на 10 это последняя цифра x.

Условие x mod 2 = 0 означает следующее: чтобы M увеличилось, число x должно быть чётным.

 

Предположим, исходное x нечётное, тогда на первом шаге M = 0.

Если на втором шаге x также нечётное (вторая цифра исходного числа нечётная), то M = 0, причём каким бы ни было значение x на третьем шаге, мы не сможем получить M = 7, поскольку остаток от деления чётного числа на 10 не превосходит 8, а 8 / 2 = 4, следовательно, вторая цифра исходного x чётная.

 

Тогда первая цифра может принимать значения 2, 4, 6, 8, но мы ищем наибольшее x, поэтому сделаем первую цифру, равной 9, тогда наше предположение не удовлетворяет условию задачи, и последняя цифра исходного числа обязана быть чётной, т.е. исходное x чётно.

 

7 = 4 + 3, чему соответствуют цифры 8 и 6. Теперь, располагая цифры по убыванию, находим наибольшее возможное x: x = 986.

 

Ответ: 986.