информатика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Игра в камни, четыре варианта хода

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 26 № 3599

Два игрока играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 3, а во второй — 6 камней. У каждого игрока неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или удваивает число камней в какой-то куче, или добавляет 2 камня в какую-то кучу. Выигрывает игрок, после хода которого общее число камней в двух кучах становится не менее 24 камней. Кто выигрывает при безошибочной игре обоих игроков — игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.


2
Задание 26 № 3603

Имеются две кучи камней, в одной из которых 1, а в другой — 4 камня. Двум игрокам предлагается игра по следующим правилам. Каждый игрок обеспечивается неограниченным запасом камней. Игроки ходят по очереди. Ход состоит в том, что игрок производит одно из возможных действий: или утраивает число камней в одной из куч, или увеличивает на 3 количество камней в какой-либо куче.

Выигрывает тот игрок, после хода которого, суммарное число камней в двух кучах становится равным 22 или более камней. Кто выиграет при безошибочной игре обоих игроков — игрок, делающий первый ход, или игрок, делающий второй ход? Как должен ходить выигрывающий игрок?


3
Задание 26 № 4570

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых – 4, а во второй – 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или утраивает число камней в какой-либо куче, или добавляет 2 камня в какую-либо кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 19. Если в момент завершения игры общее число камней в двух кучах не менее 35, то выиграл Ваня, в противном случае – Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.

Источник: Демонстрационная версия ЕГЭ—2013 по информатике.
Пояснение · ·

4
Задание 26 № 4736

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 4, а во второй - 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или утраивает число камней в какой-то куче, или добавляет 1 камень в какую-то кучу. Игра завершается в тот момент, когда общее количество камней в двух кучах становится не менее 20. Если в момент завершения игры общее число камней в двух кучах не менее 35, то выиграл Ваня, в противном случае - Петя. Кто выигрывает при безошибочной игре обоих игроков? Укажите, стратегию выигрывающего игрока - какой ход он должен сделать в каждой из позиций, которые могут ему встретиться при правильной игре. Докажите, что описанная стратегия - выигрышная.


5
Задание 26 № 4876

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 2, а во второй — 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или утраивает число камней в какой-то куче, или добавляет 4 камня в какую-то кучу. Игра завершается в тот момент, когда общее число камней в двух кучах становится не менее 32. Если в момент завершения игры количество камней в одной из куч не менее 36, то выиграл Ваня, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока?

 

Ответ обоснуйте.


6
Задание 26 № 4877

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 4, а во второй — 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или утраивает число камней в какой-то куче, или добавляет 2 камня в какую-то кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 20. Если в момент завершения игры общее число камней в двух кучах не менее 36, то выиграл Ваня, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.


7
Задание 26 № 4878

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 3, а во второй — 2 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или удваивает число камней в какой-то куче, или добавляет 3 камня в какую-то кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 14. Если в момент завершения игры количество камней в одной из куч не менее 21, то выиграл Ваня, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.


8
Задание 26 № 4879

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 3, а во второй — 4 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или удваивает число камней в какой-то куче, или добавляет 3 камня в какую-то кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 16. Если в момент завершения игры общее число камней в двух кучах не менее 24, то выиграл Ваня, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.


9
Задание 26 № 4881

Два игрока, Петя и Вася, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 4, а во второй — 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или удваивает число камней в какой-то куче, или добавляет 4 камня в какую-то кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 20. Если в момент завершения игры общее число камней в двух кучах не менее 28, то выиграл Вася, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока?

 

Ответ обоснуйте.


10
Задание 26 № 4882

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 2, а во второй — 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или удваивает число камней в какой-то куче, или добавляет 3 камня в какую-то кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 15. Если в момент завершения игры количество камней в одной из куч не менее 19, то выиграл Ваня, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока?

 

Ответ обоснуйте.


11
Задание 26 № 4883

Два игрока, Петя и Вася играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 5, а во второй — 6 камней. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок увеличивает или в 2 раза, или в 3 раза число камней в какой-то куче. Выигрывает игрок, после хода которого общее число камней в двух кучах становится не менее 48 камней. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока?

 

Ответ обоснуйте.


12
Задание 26 № 8114

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 55. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 55 или больше камней.

В начальный момент в первой куче было 5 камней, во второй куче – S камней; 1 ≤ S ≤ 49.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход, и соответствующие выигрывающие ходы. Если при некотором значении S Петя может выиграть несколькими способами,

достаточно указать один выигрывающий ход.

б) Сколько существует значений S, при которых Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом?

2. Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором одновременно выполняются два условия:

− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте ходы,

в узлах указывайте позиции. В заданиях 2 и 3 достаточно указать одно значение S и объяснить, почему это

значение удовлетворяет условию соответствующего задания.

Источник: ЕГЭ 05.05.2015. До­сроч­ная волна.

13
Задание 26 № 9377

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, что в кучах всего будет 73 камня или больше.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (6, 34), (7, 33), (9, 32) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

Задание 1. Для каждой из начальных позиций (6, 33), (8, 32) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 2. Для каждой из начальных позиций (6, 32), (7, 32), (8, 31) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 3. Для начальной позиции (7, 31) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2016 по информатике.

14
Задание 26 № 9776

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 20 камней, а в другой 7 камней; такую позицию в игре будем обозначать (20, 7). Тогда за один ход можно получить любую из четырёх позиций: (21, 7), (40, 7), (20, 8), (20, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, что в кучах всего будет 77 камней или больше.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника. Например, при начальных позициях (10, 34), (11, 33) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

Задание 1. Для каждой из начальных позиций (10, 33), (12, 32) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 2. Для каждой из начальных позиций (10, 32), (11, 32), (12, 31) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 3. Для начальной позиции (11, 31) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.


15
Задание 26 № 9812

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 20 камней, а в другой 7 камней; такую позицию в игре будем обозначать (20, 7). Тогда за один ход можно получить любую из четырёх позиций: (21, 7), (40, 7), (20, 8), (20, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 97. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, что в кучах всего будет 97 камней или больше.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока - значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (10, 44), (11, 43) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

Задание 1. Для каждой из начальных позиций (10, 43), (12, 42) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 2. Для каждой из начальных позиций (10, 42), (11, 42), (12, 41) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 3. Для начальной позиции (11, 41) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.


16
Задание 26 № 10516

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию в игре будем обозначать (6, 9). Тогда за один ход можно получить любую из четырёх позиций: (12, 9), (7, 9), (6, 10), (6, 18). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, что в кучах всего будет 77 или больше камней.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (20, 30) и (37, 20) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

Задание 1

Для каждой из начальных позиций (10, 33), (14, 31) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 2

Для каждой из начальных позиций (10, 32), (13, 31), (14, 30) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 3

Для начальной позиции (13, 30) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.


17
Задание 26 № 12442

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, что в кучах всего будет 77 или больше камней.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (6, 36), (7, 35), (9, 34) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

 

      Задание 1. Для каждой из начальных позиций (6, 35), (8, 34) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт

к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

 

      Задание 2. Для каждой из начальных позиций (6, 34), (7, 34), (8, 33) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

 

      Задание 3. Для начальной позиции (7, 33) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.

Источник: Задания для школы экспертов. Информатика. 2016 год.

18
Задание 26 № 16053

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (30, 7), (10, 8), (10, 21). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 68 или больше камней.

В начальный момент в первой куче было шесть камней, во второй куче — S камней; 1 ≤ S ≤ 61.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

 

Выполните следующие задания.

Задание 1.

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 2. Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанного значения S опишите выигрышную стратегию Пети.

Задание 3. Укажите значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы).

В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2019 по информатике.

19
Задание 26 № 16401

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в одну из куч один камень или

увеличить количество камней в куче в два раза.

 

Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 18). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 50. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 50 или больше камней.

В начальный момент в первой куче было 8 камней, во второй куче — S камней, 1 ≤ S ≤ 41.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

б) Назовите минимальное значение S, при котором Ваня может выиграть первым ходом в случае неудачного первого хода Пети.

Задание 2.

Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). В узлах дерева указывайте игровые позиции. Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.


20
Задание 26 № 16455

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в одну из куч один камень или

увеличить количество камней в куче в два раза.

 

Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 18). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 50. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 50 или больше камней.

В начальный момент в первой куче было 10 камней, во второй куче — S камней, 1 ≤ S ≤ 51.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

б) Назовите минимальное значение S, при котором Ваня может выиграть первым ходом в случае неудачного первого хода Пети.

Задание 2.

Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). В узлах дерева указывайте игровые позиции. Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.


Пройти тестирование по этим заданиям