Задания
Версия для печати и копирования в MS Word

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 129. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу из 129 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 128.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Най­ди­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—  у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

—  у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Если най­де­но не­сколь­ко зна­че­ний S, в от­ве­те за­пи­ши­те ми­ни­маль­ное из них.

Спрятать решение

Ре­ше­ние.

Такое зна­че­ние S  — 62. Петя своим пер­вым ходом может по­лу­чить по­зи­ции 63 или 124. При S  =  124 Ваня уве­ли­чи­ва­ет ко­ли­че­ство кам­ней в куче в два раза и вы­иг­ры­ва­ет своим пер­вым ходом. При S  =  63 Ваня до­бав­ля­ет в кучу один ка­мень. Тогда, вне за­ви­си­мо­сти от хода Пети, Ваня вы­иг­ры­ва­ет своим вто­рым ходом.

 

Ответ: 62.

 

При­ведём дру­гое ре­ше­ние на языке Python.

#Ис­клю­чим стра­те­гию Вани, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом:

 

def f(x, h):

if (h == 3 or h == 5) and x >= 129:

return 1

elif h == 5 and x < 129:

return 0

elif x >= 129 and h < 5:

return 0

else:

if h % 2 == 0:

return f(x + 1, h + 1) or f(x * 2, h + 1) # стра­те­гия по­бе­ди­те­ля

else:

return f(x + 1, h + 1) and f(x * 2, h + 1) # стра­те­гия про­иг­рав­ше­го

 

def f1(x, h):

if h == 3 and x >= 129:

return 1

elif h == 3 and x < 129:

return 0

elif x >=129 and h < 3:

return 0

else:

if h % 2 == 0:

return f1(x + 1, h + 1) or f1(x * 2, h + 1) # стра­те­гия по­бе­ди­те­ля

else:

return f1(x + 1, h + 1) and f1(x * 2, h + 1) # стра­те­гия про­иг­рав­ше­го(любой ход)

 

for x in range(1, 129):

if f(x, 1) == 1:

print(x)

print("====")

for x in range(1, 129):

if f1(x, 1) == 1:

print(x) # Ис­клю­чим эти зна­че­ния из спис­ка выше


Аналоги к заданию № 38599: 47225 70082 79734 Все

Источники:
1

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 129. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу из 129 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 128.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те такое зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Аналоги к заданию № 38597: 47223 70080 79732 Все


2

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не менее 129. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу из 129 или боль­ше кам­ней.

В на­чаль­ный мо­мент в куче было S кам­ней, 1 ≤ S ≤ 128.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Най­ди­те два наи­мень­ших зна­че­ния S, при ко­то­рых у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

—  Петя не может вы­иг­рать за один ход;

—  Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Най­ден­ные зна­че­ния за­пи­ши­те в от­ве­те в по­ряд­ке воз­рас­та­ния.


Аналоги к заданию № 38598: 47224 70081 79733 Все