Каталог заданий.
Две кучи
Версия для печати и копирования в MS Word
1

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, пусть в одной куче 10 кам­ней, а в дру­гой 5 кам­ней; такую по­зи­цию в игре будем обо­зна­чать (10, 5). Тогда за один ход можно по­лу­чить любую из четырёх по­зи­ций: (11, 5), (20, 5), (10, 6), (10, 10). Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 77. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший такую по­зи­цию, при ко­то­рой в кучах будет 77 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было семь кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 69.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

2
Тип 19 № 27747
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в че­ты­ре раза. На­при­мер, пусть в одной куче 6 кам­ней, а в дру­гой 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (6, 9). За один ход из по­зи­ции (6, 9) можно по­лу­чить любую из четырёх по­зи­ций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 82. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 82 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 4 камня, во вто­рой куче  — S кам­ней, 1 ≤ S ≤ 77.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по ней иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не га­ран­ти­ру­ют вы­иг­рыш не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

3
Тип 19 № 27759
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить один ка­мень в одну из куч и два камня в дру­гую или же уве­ли­чить ко­ли­че­ство кам­ней в любой куче в два раза. На­при­мер, пусть в одной куче 6 кам­ней, а в дру­гой  — 8 кам­ней; такую по­зи­цию мы будем обо­зна­чать (6, 8). За один ход из по­зи­ции (6, 8) можно по­лу­чить любую из четырёх по­зи­ций: (7, 10), (8, 9), (12, 8), (6, 16). Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 41. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 41 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 8 кам­ней, во вто­рой куче  — S кам­ней, 1 ≤ S ≤ 32.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по ней иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не га­ран­ти­ру­ют вы­иг­рыш не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

4
Тип 19 № 27765
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч один ка­мень, уве­ли­чить ко­ли­че­ство кам­ней в пер­вой куче в два раза или уве­ли­чить ко­ли­че­ство кам­ней во вто­рой куче в три раза. На­при­мер, пусть в одной куче 6 кам­ней, а в дру­гой 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (6, 9). За один ход из по­зи­ции (6, 9) можно по­лу­чить любую из четырёх по­зи­ций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 69. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 69 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 10 кам­ней, во вто­рой куче  — S кам­ней, 1 ≤ S ≤ 58.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по ней иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не га­ран­ти­ру­ю­щие вы­иг­рыш не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

5
Тип 19 № 27771
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может убрать из одной из куч один ка­мень или умень­шить ко­ли­че­ство кам­ней в куче в два раза (если ко­ли­че­ство кам­ней в куче нечётно, остаётся на 1 ка­мень мень­ше, чем уби­ра­ет­ся). На­при­мер, пусть в одной куче 6, а в дру­гой 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (6, 9). За один ход из по­зи­ции (6, 9) можно по­лу­чить любую из четырёх по­зи­ций: (5, 9), (3, 9), (6, 8), (6, 4).

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не более 20. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 20 или мень­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 10 кам­ней, во вто­рой куче  — S кам­ней, S > 10.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по ней иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не га­ран­ти­ру­ю­щие вы­иг­рыш не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те мак­си­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

6
Тип 19 № 27780
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может

до­ба­вить в одну из куч один ка­мень или

уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза.

На­при­мер, пусть в одной куче 6 кам­ней, а в дру­гой  — 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (6, 9). За один ход из по­зи­ции (6, 9) можно по­лу­чить любую из четырёх по­зи­ций: (7, 9), (12, 9), (6, 10), (6, 18). Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 74. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 74 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 12 кам­ней, во вто­рой куче  — S кам­ней, 1 ≤ S ≤ 61.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по ней иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не га­ран­ти­ру­ю­щие вы­иг­рыш не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

7
Тип 19 № 27797
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, пусть в одной куче 10 кам­ней, а в дру­гой  — 7 кам­ней; такую по­зи­цию в игре будем обо­зна­чать (10, 7). Тогда за один ход можно по­лу­чить любую из четырёх по­зи­ций: (11, 7), (30, 7), (10, 8), (10, 21). Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 68. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший такую по­зи­цию, при ко­то­рой в кучах будет 68 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было шесть кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 61.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

8
Тип 19 № 29667
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, пусть в одной куче 7 кам­ней, а в дру­гой  — 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (7, 9). За один ход из по­зи­ции (7, 9) можно по­лу­чить любую из четырёх по­зи­ций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 49. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 49 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 5 кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 43.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на


Ответ:

9
Тип 19 № 33521
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или до­ба­вить столь­ко кам­ней, сколь­ко их в дан­ный мо­мент в дру­гой куче. На­при­мер, пусть в одной куче 5 кам­ней, а в дру­гой  — 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (5, 9). За один ход из по­зи­ции (5, 9) можно по­лу­чить любую из четырёх по­зи­ций: (6, 9), (14, 9), (5, 10), (5, 14). Чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 75. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 75 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 7 кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 67.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

10
Тип 19 № 35477
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, пусть в одной куче 5 кам­ней, а в дру­гой  — 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (5, 9). За один ход из по­зи­ции (5, 9) можно по­лу­чить любую из четырёх по­зи­ций: (6, 9), (10, 9), (5, 10), (5, 18).

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 77. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 77 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 8 кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 68.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на


Ответ:

11
Тип 19 № 35993
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в три раза. На­при­мер, пусть в одной куче 5 кам­ней, а в дру­гой  — 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (5, 9). За один ход из по­зи­ции (5, 9) можно по­лу­чить любую из четырёх по­зи­ций: (6, 9), (15, 9), (5, 10), (5, 27).

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 79. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 79 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 6 кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 72.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по этой стра­те­гии иг­ро­ка, не яв­ля­ю­щи­е­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не яв­ля­ю­щи­е­ся вы­иг­рыш­ны­ми не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на


Ответ:

12
Тип 19 № 45253
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 231. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший такую по­зи­цию, при ко­то­рой в кучах будет 231 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 17 кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 213.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.


Ответ:

13
Тип 19 № 51988
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в мень­шую кучу один ка­мень, до­ба­вить два камня или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Из­ме­нять ко­ли­че­ство кам­ней в боль­шей куче не раз­ре­ша­ет­ся. Пусть, на­при­мер, в на­ча­ле игры в пер­вой куче 5 кам­ней, а во вто­рой  — 8 кам­ней, будем обо­зна­чать такую по­зи­цию (5, 8). Петя пер­вым ходом дол­жен до­бав­лять камни в первую кучу, он может по­лу­чить по­зи­ции (6, 8), (7, 8) и (10, 8). Если Петя по­лу­ча­ет по­зи­ции (6, 8) и (7, 8), Ваня сле­ду­ю­щим ходом тоже дол­жен до­бав­лять камни в первую кучу, а если Петя по­лу­ча­ет по­зи­цию (10, 8), Ваня дол­жен до­бав­лять камни во вто­рую кучу, так как те­перь она стала мень­шей.

Игра за­вер­ша­ет­ся, когда общее ко­ли­че­ство кам­ней в двух кучах ста­но­вит­ся более 80. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший 81 или боль­ше кам­ней в двух кучах.

В на­чаль­ный мо­мент в пер­вой куче было 12 кам­ней, а во вто­рой  — S кам­ней, 1 ≤ S ≤ 68.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное из таких зна­че­ний S, при ко­то­рых Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня смо­жет вы­иг­рать своим пер­вым ходом.


Ответ:

14
Тип 19 № 55606
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в боль­шую кучу любое ко­ли­че­ство кам­ней от од­но­го до трёх или удво­ить ко­ли­че­ство кам­ней в мень­шей куче. Если кучи со­дер­жат рав­ное ко­ли­че­ство кам­ней, можно до­ба­вить в любую из них от од­но­го до трёх кам­ней, удво­е­ние в этой си­ту­а­ции за­пре­ще­но.

Игра за­вер­ша­ет­ся, когда общее ко­ли­че­ство кам­ней в кучах ста­но­вит­ся более 40. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший 41 или боль­ше кам­ней в двух кучах.

Из­вест­но, что Петя смог вы­иг­рать пер­вым ходом. Какое наи­мень­шее число кам­ней могло быть сум­мар­но в двух кучах?


Ответ:

15
Тип 19 № 56519
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в мень­шую кучу любое ко­ли­че­ство кам­ней от од­но­го до ко­ли­че­ства кам­ней в этой куче. Из­ме­нять ко­ли­че­ство кам­ней в боль­шей куче не раз­ре­ша­ет­ся. Если кучи со­дер­жат рав­ное ко­ли­че­ство кам­ней, до­бав­лять камни можно в любую из них. Пусть, на­при­мер, в на­ча­ле игры в пер­вой куче 3 камня, а во вто­рой  — 5 кам­ней, будем обо­зна­чать такую по­зи­цию (3, 5). Петя пер­вым ходом дол­жен до­ба­вить в первую кучу от 1 до 3 кам­ней, он может по­лу­чить по­зи­ции (4, 5), (5, 5) и (6, 5). Если Петя создаёт по­зи­цию (4, 5), то Ваня своим ходом может до­ба­вить от 1 до 4 кам­ней в первую кучу, а если Петя создаёт по­зи­цию (6, 5), то Ваня может до­ба­вить от 1 до 5 кам­ней во вто­рую кучу, так как те­перь она стала мень­шей. В по­зи­ции (5, 5) Ваня может до­ба­вить от 1 до 5 кам­ней в любую кучу.

Игра за­вер­ша­ет­ся, когда общее ко­ли­че­ство кам­ней в кучах ста­но­вит­ся более 45. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший 46 или боль­ше кам­ней в двух кучах.

Из­вест­но, что Петя смог вы­иг­рать пер­вым ходом. Какое наи­мень­шее число кам­ней могло быть сум­мар­но в двух кучах?


Ответ:

16
Тип 19 № 58486
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней, не мень­ше од­но­го камня в каж­дой. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в боль­шую кучу любое ко­ли­че­ство кам­ней от од­но­го до трёх или удво­ить ко­ли­че­ство кам­ней в мень­шей куче. Если кучи со­дер­жат рав­ное ко­ли­че­ство кам­ней, можно до­ба­вить в любую из них от од­но­го до трёх кам­ней, удво­е­ние в этой си­ту­а­ции за­пре­ще­но.

Игра за­вер­ша­ет­ся в тот мо­мент, когда ко­ли­че­ство кам­ней в одной из куч до­сти­га­ет 48. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 48 или боль­ше кам­ней. Из­вест­но, что Петя смог вы­иг­рать пер­вым ходом. Какое наи­мень­шее число кам­ней могло быть сум­мар­но в двух кучах?


Ответ:

17
Тип 19 № 68520
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 59. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший такую по­зи­цию, при ко­то­рой в кучах ока­зы­ва­ет­ся 59 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было пять кам­ней, во вто­рой куче  — S кам­ней; 1 ≤ S ≤ 53.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром такая си­ту­а­ция воз­мож­на.


Ответ:

18
Тип 19 № 78044
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

—  убрать из кучи два камня,

—  умень­шить ко­ли­че­ство кам­ней в куче в три раза (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не более 150.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший сум­мар­но в кучах 150 кам­ней или мень­ше.

В на­чаль­ный мо­мент в пер­вой куче было 17 кам­ней, во вто­рой куче  — S кам­ней; S > 134.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Ваня может вы­иг­рать за один ход при не­удач­ном ходе Пети.


Ответ:

19
Тип 19 № 78075
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может:

—  убрать из кучи два камня,

—  умень­шить ко­ли­че­ство кам­ней в куче в три раза (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не более 165.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т. е. пер­вым по­лу­чив­ший сум­мар­но в кучах 165 кам­ней или мень­ше.

В на­чаль­ный мо­мент в пер­вой куче было 17 кам­ней, во вто­рой куче  — S кам­ней; S > 149.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Ваня может вы­иг­рать за один ход при не­удач­ном ходе Пети.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.