На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится троичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если сумма цифр троичной записи числа N делится на 3, то в этой записи два левых разряда заменяются на «112»;
б) если сумма цифр троичной записи числа N на 3 не делится, то эта сумма переводится в троичную систему счисления и дописывается в конец числа.
Полученная таким образом запись является троичной записью искомого числа R.
3. Результат переводится в десятичную систему и выводится на экран.
Например, для исходного числа 11 = 1023 результатом является число 11223 = 44, а для исходного числа 12 = 1103 результатом является число 11023 = 38.
Укажите минимальное чётное число R, большее 702, которое может быть получено с помощью описанного алгоритма. В ответе запишите это число в десятичной системе счисления.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится троичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если число N делится на 3, то слева дописывается «1», а справа — «02»;
б) если число N на 3 не делится, то остаток от деления числа на 3 умножается на 4, переводится в троичную запись и дописывается в начало числа.
Полученная таким образом запись является троичной записью искомого числа R.
3. Результат переводится в десятичную систему и выводится на экран.
Например, для исходного числа 11 = 1023 результатом является число 221023 = 227, а для исходного числа 12 = 1103 результатом является число 1110023 = 353.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее, чем 135.

