Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 21 № 61367
i

Для игры, опи­сан­ной в за­да­нии 19, най­ди­те мак­си­маль­ное зна­че­ние S, при ко­то­ром у Вани есть стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, но у Вани нет стра­те­гии, ко­то­рая поз­во­ли­ла бы ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.


Аналоги к заданию № 61367: 61401 Все

1
Тип 19 № 61365
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза, если оно нечётное, или в пол­то­ра раза, если оно чётное.

На­при­мер, если в куче 5 кам­ней, то за один ход можно по­лу­чить 6 или 10 кам­ней, а если в куче 6 кам­ней, то за один ход можно по­лу­чить 7 или 9 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче до­сти­га­ет 108. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 108 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, 1 ≤ S ≤ 107.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Аналоги к заданию № 61365: 61399 Все


2
Тип 20 № 61366
i

Для игры, опи­сан­ной в за­да­нии 19, най­ди­те два наи­мень­ших зна­че­ния S, при ко­то­рых Петя не может вы­иг­рать пер­вым ходом, но у Пети есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать вто­рым ходом при любой игре Вани.

В от­ве­те за­пи­ши­те най­ден­ные зна­че­ния в по­ряд­ке воз­рас­та­ния.

 

Ответ:


Аналоги к заданию № 61366: 61400 Все


2
Тип 21 № 61401
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза, если оно нечётное, или в пол­то­ра раза, если оно чётное.

На­при­мер, если в куче 5 кам­ней, то за один ход можно по­лу­чить 6 или 10 кам­ней, а если в куче 6 кам­ней, то за один ход можно по­лу­чить 7 или 9 кам­ней. Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче до­сти­га­ет 84.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 84 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, 1 ≤ S ≤ 83.

Най­ди­те мак­си­маль­ное зна­че­ние S, при ко­то­ром у Вани есть стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети, но у Вани нет стра­те­гии, ко­то­рая поз­во­ли­ла бы ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.


Аналоги к заданию № 61367: 61401 Все

1
Тип 19 № 61399
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в кучу один ка­мень, уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза, если оно нечётное, или в пол­то­ра раза, если оно чётное.

На­при­мер, если в куче 5 кам­ней, то за один ход можно по­лу­чить 6 или 10 кам­ней, а если в куче 6 кам­ней, то за один ход можно по­лу­чить 7 или 9 кам­ней. Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче до­сти­га­ет 84.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 84 или боль­ше кам­ней.

В на­ча­ле игры в куче было S кам­ней, 1 ≤ S ≤ 83.

Ука­жи­те мак­си­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать пер­вым ходом, но при любом пер­вом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.


Аналоги к заданию № 61365: 61399 Все


2
Тип 20 № 61400
i

Для игры, опи­сан­ной в за­да­нии 19, най­ди­те два наи­мень­ших зна­че­ния S, при ко­то­рых Петя не может вы­иг­рать пер­вым ходом, но у Пети есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать вто­рым ходом при любой игре Вани.

В от­ве­те за­пи­ши­те най­ден­ные зна­че­ния в по­ряд­ке воз­рас­та­ния.

 

Ответ:


Аналоги к заданию № 61366: 61400 Все