Каталог заданий.
Рекурсивные функции с возвращаемыми значениями

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 16 № 36871

Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

 

F(0) = 0;

F(n) = F(n / 2), если n > 0 и при этом чётно;

F(n) = 1 + F(n − 1), если n нечётно.

 

Сколько существует таких чисел n, что 1 ≤ n ≤ 1000 и F(n) = 3?

Раздел кодификатора ФИПИ: 1.5.3 Индуктивное определение объектов

2
Тип 16 № 37151

Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

 

F(n) = 0, при n ≤ 1;

F(n) = F(n − 1) + 3n2, если n > 1 и при этом нечётно;

F(n) = n / 2 + F(n − 1) + 2, если n > 1 и при этом чётно.

 

Чему равно значение функции F(49)? В ответе запишите только целое число.

Источник: ЕГЭ по информатике 24.06.2021. Основная волна. Вариант Евгения Джобса
Раздел кодификатора ФИПИ: 1.5.3 Индуктивное определение объектов

3
Тип 16 № 38591

Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

F(n) = 1 при n = 1;

F(n) = n + F(n − 1), если n чётно,

F(n) = 2 × F(n − 2), если n > 1 и при этом n нечётно.

Чему равно значение функции F(26)?

Источник: Демонстрационная версия ЕГЭ−2022 по информатике
Раздел кодификатора ФИПИ: 1.5.3 Индуктивное определение объектов

4
Тип 16 № 45250

Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

F(n) = 2 при n < 3;

F(n) = F(n − 2) + F(n − 1) − n, если n > 2 и при этом n чётно,

F(n) =F(n − 1) − F(n − 2) + 2 × n, если n > 2 и при этом n нечётно.

Чему равно значение функции F(32)?

Источник: ЕГЭ по информатике 2022. Досрочная волна

Пройти тестирование по этим заданиям