При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-символьного набора: А, В, C, D, Е, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей.
Для хранения сведений о 20 пользователях потребовалось 300 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число – количество байт.
Согласно условию, в номере могут быть использованы 12 букв. Известно, что с помощью N бит можно закодировать 2N различных вариантов. Поскольку 23 < 12 < 24, то для записи каждого из 12 символов необходимо 4 бита.
Для хранения всех 15 символов пароля нужно 4 · 15 = 60 бит, а т. к. для записи используется целое число байт, то берём ближайшее не меньшее значение, кратное восьми, это число 64 = 8 · 8 бит (8 байт).
Пусть количество памяти, отведенное под дополнительные седения равно x, тогда:
20 * (8+x) = 300
x = 7
Ответ: 7.

