На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если число чётное, то к двоичной записи числа слева дописывается 10;
б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.
Полученная таким образом запись является двоичной записью искомого числа R.
3. Результат переводится в десятичную систему и выводится на экран.
Например, для исходного числа 410 = 1002 результатом будет являться число 2010 = 101002, а для исходного числа 510 = 1012 результатом будет являться число 1101012 = 5310.
Укажите максимальное число R, которое может быть результатом работы данного алгоритма, при условии, что N не больше 12. В ответе запишите это число в десятичной системе счисления.
Приведём решение на языке Python.
maxi = 0
for n in range(1,12 + 1):
s = bin(n)[2:]
if n % 2 == 0:
s = "10" + s
else:
s = "1" + s + "01"
r = int(s, 2)
maxi = max(maxi, r)
print(maxi)
Ответ: 109.

