СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 23 № 5467

Сколько существует различных наборов значений логических переменных x1, x2, ... x10, которые удовлетворяют всем перечисленным ниже условиям?

 

((x1 ≡ x2) ∧ (x3 ≡ x4)) ∨ (¬(x1 ≡ x2) ∧ ¬(x3 ≡ x4)) = 0

((x3 ≡ x4) ∧ (x5 ≡ x6)) ∨ (¬(x3 ≡ x4) ∧ ¬(x5 ≡ x6)) = 0

((x5 ≡ x6) ∧ (x7 ≡ x8)) ∨ (¬(x5 ≡ x6) ∧ ¬(x7 ≡ x8)) = 0

((x7 ≡ x8) ∧ (x9 ≡ x10)) ∨ (¬(x7 ≡ x8) ∧ ¬(x9 ≡ x10)) = 0

 

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x10 при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Решение.

Построим древо решений первого уравнения:

 

 

Заметим, что выражение (x3 ≡ x4) в двух случаях равно 1 и в двух случаях равно 0. Таким образом, одно уравнение имеет восемь решений.

 

Второе уравнение связано с первым только через выражение (x3 ≡ x4). Построим древо решений второго уравнения:

 

 

Для каждого из значений 0 и 1 выражения (x3 ≡ x4) существует четыре набора переменных x1, x2,...,x4, удовлетворяющих первому уравнению (см. первый рисунок). Таким образом, система из двух уравнений имеет 4 · 4 = 16 решений.

 

Третье уравнение связано со вторым только через выражение (x5 ≡ x6). Построим древо решений третьего уравнения:

 

 

Для каждого из значений 0 и 1 выражения (x5 ≡ x6) существует 2 · 4 = 8 наборов переменных x1, x2,...,x6, удовлетворяющих первому уравнению (см. первый и второй рисунок). Таким образом, система из трёх уравнений имеет 8 · 4 = 32 решения.

 

Аналогично система из четырёх уравнений будет иметь 64 решения.

 

Ответ: 64.


Аналоги к заданию № 5467: 5595 5627 Все

Источник: ЕГЭ по ин­фор­ма­ти­ке 30.05.2013. Ос­нов­ная волна. Сибирь. Ва­ри­ант 1.