Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 31 оканчивается на 4.
1. Итак, нужно найти все целые числа (цифра 4 присутствует в системах счисления только с таким основанием), такие что остаток от деления 31 на N равен 4, или (что то же самое)
где k — целое неотрицательное число (0, 1, 2, …);
2. Из формулы получаем
так что задача сводится к тому, чтобы найти все делители числа 27, которые больше 4;
3. В этой задаче есть только два таких делителя: и
Примечание.
Некоторые читатели могут подумать, что основанием системы счисления может быть также число 17, поскольку при записи числа 31 в этой системе количество единиц равно 14, то есть оканчивается на 4. Но число 14 в системе счисления с основанием 17 будет записано в виде буквы Е, следовательно, число 31 будет иметь вид 1Е.

