СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 5 № 11234

По каналу связи передаются сообщения, содержащие только шесть букв: А, B, C, D, E, F. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, B, C используются такие кодовые слова: А – 11, B – 101, C – 0. Какова наименьшая возможная суммарная длина всех кодовых слов?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.

Решение.

Заметим, что для алфавита из трёх букв, код с наименьшей суммарной длиной кодовых слов, удовлетворяющий условию Фано имел бы длину 1 + 2 + 2 = 5. Для алфавита из четырёх букв: 1 + 2 + 3 + 3 = 9. Аналогично можно получить минимальную длину суммарную длину кодовых слов для алфавита, содержащего произвольное число символов.

Удостоверимся, что, используя кодовые слова, приведённые в условии можно построить код, удовлетворяющий условию Фано и имеющий наименьшую суммарную длину. Будем использовать для буквы D кодовое слово 1000, для буквы E кодовое слово 10010, для буквы F 10011.

Суммарная длина такого кода 1 + 2 + 3 + 4 + 5 + 5 = 20.

 

Ответ: 20.