Задания
Версия для печати и копирования в MS Word
Тип 18 № 78074
i

Квад­рат раз­ли­но­ван на N × N кле­ток (1 < N < 30). Ис­пол­ни­тель Робот может пе­ре­ме­щать­ся по клет­кам, вы­пол­няя за одно пе­ре­ме­ще­ние одну из двух ко­манд: впра­во или вниз. По ко­ман­де впра­во Робот пе­ре­ме­ща­ет­ся в со­сед­нюю пра­вую клет­ку, по ко­ман­де вниз  — в со­сед­нюю ниж­нюю. Квад­рат огра­ни­чен внеш­ни­ми сте­на­ми. Между со­сед­ни­ми клет­ка­ми квад­ра­та также могут быть внут­рен­ние стены. Сквозь стену Робот прой­ти не может.

Перед каж­дым за­пус­ком Ро­бо­та в каж­дой клет­ке квад­ра­та лежит мо­не­та до­сто­ин­ством от 1 до 100. По­се­тив клет­ку, Робот за­би­ра­ет мо­не­ту с собой; это также от­но­сит­ся к на­чаль­ной и ко­неч­ной клет­кам марш­ру­та Ро­бо­та.

В «уг­ло­вых» клет­ках поля  — тех, ко­то­рые спра­ва и снизу огра­ни­че­ны сте­на­ми, Робот не может про­дол­жать дви­же­ние, по­это­му на­коп­лен­ная сумма счи­та­ет­ся ито­го­вой. Таких ко­неч­ных кле­ток на поле может быть не­сколь­ко, вклю­чая пра­вую ниж­нюю клет­ку поля. При раз­ных за­пус­ках ито­го­вые на­коп­лен­ные суммы могут раз­ли­чать­ся. При по­втор­ных за­пус­ках Ро­бо­та ко­неч­ная клет­ка долж­на от­ли­чать­ся от ко­неч­ных кле­ток преды­ду­щих за­пус­ков.

Опре­де­ли­те мак­си­маль­ную и ми­ни­маль­ную де­неж­ные суммы, среди всех воз­мож­ных ито­го­вых сумм, ко­то­рые может со­брать Робот сум­мар­но за три за­пус­ка из левой верх­ней клет­ки.

В от­ве­те ука­жи­те два числа: сна­ча­ла мак­си­маль­ную сумму, затем ми­ни­маль­ную.

Ис­ход­ные дан­ные пред­став­ля­ют собой элек­трон­ную таб­ли­цу раз­ме­ром N × N, каж­дая ячей­ка ко­то­рой со­от­вет­ству­ет клет­ке квад­ра­та. Внут­рен­ние и внеш­ние стены обо­зна­че­ны утолщёнными ли­ни­я­ми.

При­мер вход­ных дан­ных.

 

1884
10113
13122
2356

 

Ответ:

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


Квад­рат раз­ли­но­ван на N × N кле­ток (1 < N < 30). Ис­пол­ни­тель Робот может пе­ре­ме­щать­ся по клет­кам, вы­пол­няя за одно пе­ре­ме­ще­ние одну из двух ко­манд: впра­во или вниз. По ко­ман­де впра­во Робот пе­ре­ме­ща­ет­ся в со­сед­нюю пра­вую клет­ку, по ко­ман­де вниз  — в со­сед­нюю ниж­нюю. Квад­рат огра­ни­чен внеш­ни­ми сте­на­ми. Между со­сед­ни­ми клет­ка­ми квад­ра­та также могут быть внут­рен­ние стены. Сквозь стену Робот прой­ти не может.

За­да­ние 18

 

Перед каж­дым за­пус­ком Ро­бо­та в каж­дой клет­ке квад­ра­та лежит мо­не­та до­сто­ин­ством от 1 до 100. По­се­тив клет­ку, Робот за­би­ра­ет мо­не­ту с собой; это также от­но­сит­ся к на­чаль­ной и ко­неч­ной клет­кам марш­ру­та Ро­бо­та.

В «уг­ло­вых» клет­ках поля  — тех, ко­то­рые спра­ва и снизу огра­ни­че­ны сте­на­ми, Робот не может про­дол­жать дви­же­ние, по­это­му на­коп­лен­ная сумма счи­та­ет­ся ито­го­вой. Таких ко­неч­ных кле­ток на поле может быть не­сколь­ко, вклю­чая пра­вую ниж­нюю клет­ку поля. При раз­ных за­пус­ках ито­го­вые на­коп­лен­ные суммы могут раз­ли­чать­ся. При по­втор­ных за­пус­ках Ро­бо­та ко­неч­ная клет­ка долж­на от­ли­чать­ся от ко­неч­ных кле­ток преды­ду­щих за­пус­ков.

Опре­де­ли­те мак­си­маль­ную и ми­ни­маль­ную де­неж­ные суммы, среди всех воз­мож­ных ито­го­вых сумм, ко­то­рые может со­брать Робот сум­мар­но за че­ты­ре за­пус­ка из левой верх­ней клет­ки.

В от­ве­те ука­жи­те два числа: сна­ча­ла мак­си­маль­ную сумму, затем ми­ни­маль­ную.

Ис­ход­ные дан­ные пред­став­ля­ют собой элек­трон­ную таб­ли­цу раз­ме­ром N × N, каж­дая ячей­ка ко­то­рой со­от­вет­ству­ет клет­ке квад­ра­та. Внут­рен­ние и внеш­ние стены обо­зна­че­ны утолщёнными ли­ни­я­ми.

При­мер вход­ных дан­ных.

 

1884
10113
13122
2356

 

 

 

Ответ:

Сна­ча­ла найдём мак­си­маль­ную де­неж­ную сумму. Для этого найдём мак­си­маль­ную де­неж­ную сумму для каж­дой ячей­ки таб­ли­цы. В ячей­ку А22 вве­дем фор­му­лу: =A1.

Для каж­дой ячей­ки верх­ней стро­ки это будет сумма всех ячеек слева от те­ку­щей. В ячей­ку В22 вве­дем фор­му­лу =A22+B1 и ско­пи­ру­ем до ячей­ки Т22.

Для каж­дой ячей­ки ле­во­го столб­ца это будет сумма всех ячеек свер­ху от те­ку­щей. В ячей­ку А23 вве­дем фор­му­лу =A22+A2 и ско­пи­ру­ем до ячей­ки А41.

Если слева от ячей­ки име­ет­ся внут­рен­няя стен­ка, мак­си­маль­ная де­неж­ная сумма вы­чис­ля­ет­ся как сумма те­ку­щей ячей­ки и суммы свер­ху. Ско­пи­ру­ем в эти ячей­ки фор­му­лу из левой стро­ки.

Если свер­ху от ячей­ки име­ет­ся внут­рен­няя стен­ка, мак­си­маль­ная де­неж­ная сумма вы­чис­ля­ет­ся как сумма те­ку­щей ячей­ки и суммы слева. Ско­пи­ру­ем в эти ячей­ки фор­му­лу из верх­ней стро­ки.

Для осталь­ных ячеек будем срав­ни­вать зна­че­ние ячей­ки слева и зна­че­ние ячей­ки свер­ху и при­сва­и­вать те­ку­щей ячей­ке зна­че­ние суммы той ячей­ки, в ко­то­рой зна­че­ние боль­ше, и те­ку­щей ячей­ки. В B23 за­пи­шем фор­му­лу =МАКС(A23+B2;B22+B2) и ско­пи­ру­ем эту фор­му­лу во все остав­ши­е­ся ячей­ки диа­па­зо­на B23:T41.

По­сколь­ку за­пус­ков было 4, най­дем 4 мак­си­маль­ные ито­го­вые суммы и сло­жим их.

За­пи­сав фор­му­лу

=МАКС(J27;L37;O37;Q31;S35;T41)+НАИ­БОЛЬ­ШИЙ((J27;L37;O37;Q31;S35;T41);2)+НАИ­БОЛЬ­ШИЙ((J27;L37;O37;Q31;S35;T41);3)+НАИ­БОЛЬ­ШИЙ((J27;L37;O37;Q31;S35;T41);4)

по­лу­чим зна­че­ние мак­си­маль­ной де­неж­ной суммы  — 8830.

Ана­ло­гич­ным об­ра­зом найдём зна­че­ние ми­ни­маль­ной де­неж­ной суммы.

За­ме­ним МАКС на МИН в фор­му­лах.

За­пи­сав фор­му­лу =МИН(J27;L37;O37;Q31;S35;T41)+НАИ­МЕНЬ­ШИЙ((J27;L37;O37;Q31;S35;T41);2)+НАИ­МЕНЬ­ШИЙ((J27;L37;O37;Q31;S35;T41);3)+НАИ­МЕНЬ­ШИЙ((J27;L37;O37;Q31;S35;T41);4),

по­лу­чим зна­че­ние ми­ни­маль­ной де­неж­ной суммы  — 3510.

 

Ответ: 8830  3510.


Аналоги к заданию № 78043: 78074 Все