На числовой прямой даны два отрезка: P = [37; 60] и Q = [40; 77]. Укажите наименьшую возможную длину такого отрезка A, что формула
(x ∈ P) → (((x ∈ Q) ∧ ¬(x ∈ A)) → ¬(x ∈ P))
истинна при любом значении переменной х, т. е. принимает значение 1 при любом значении переменной х.
Введем обозначения:
(x ∈ А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q.
Преобразовав, получаем:
¬P ∨ ¬(Q ∧ ¬A) ∨ ¬P = ¬P ∨ ¬Q ∨ A.
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Условию ¬P ∨ ¬Q = 1 удовлетворяют лучи (−∞, 40) и (60, ∞). Поскольку выражение ¬P ∨ ¬Q ∨ A должно быть тождественно истинным, выражение A должно быть истинно на отрезке [40, 60]. Его длина равна 20.
Ответ: 20.

