Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, которые удовлетворяют всем перечисленным ниже условиям?
(x1→x2) ∧ (x2→x3) ∧ (x3→x4) = 1
(¬x1 ∧ y1 ∧ z1) ∨ (x1 ∧ ¬y1 ∧ z1) ∨ (x1 ∧ y1 ∧ ¬z1) = 1
(¬x2 ∧ y2 ∧ z2) ∨ (x2 ∧ ¬y2 ∧ z2) ∨ (x2 ∧ y2 ∧ ¬z2) = 1
(¬x3 ∧ y3 ∧ z3) ∨ (x3 ∧ ¬y3 ∧ z3) ∨ (x3 ∧ y3 ∧ ¬z3) = 1
(¬x4 ∧ y4 ∧ z4) ∨ (x4 ∧ ¬y4 ∧ z4) ∨ (x4 ∧ y4 ∧ ¬z4) = 1
В ответе не нужно перечислять все различные наборы значений переменных
x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Рассмотрим первое уравнение. Ему удовлетворяют следующие наборы переменных x1, x2, x3, x4: 1111, 0111, 0011, 0001, 0000.
Рассмотрим оставшиеся уравнения для первого набора x1, x2, x3, x4: 1111. Во втором уравнении первая скобка будет равна 0. Из второй и третьей скобок ясно, что переменные y1 и z1 могут принимать значения 01 или 10. Имеем два набора решений второго уравнения. Аналогично для третьего, четвёртого и пятого уравнений. Таким образом, для набора x1, x2, x3, x4: 1111, получаем 16 наборов переменных y1, y2, y3, y4, z1, z2, z3, z4 (см. рис).
Рассмотрим второй набор переменных x1, x2, x3, x4: 0111. В этом случае из второго уравнения ясно, что переменные y1 и z1 могут принимать значения 11. Для оставшихся уравнений ситуация аналогична первому набору. Таким образом, для набора x1, x2, x3, x4: 0111, получаем 8 наборов переменных y1, y2, y3, y4, z1, z2, z3, z4 (см. рис).
Проведя аналогичные рассуждения для наборов 0011, 0001 и 0000, получаем, соответственно 4, 2 и 1 набор переменных y1, y2, y3, y4, z1, z2, z3, z4 соответственно.
Всего имеем 16 + 8 + 4 + 2 + 1 = 31 набор переменных x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, которые удовлетворяют всем уравнениям.
Ответ: 31.

