СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 23 № 6788

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1→x2) ∧ (x2→x3) ∧ (x3→x4) = 1

(¬x1 ∧ y1 ∧ z1) ∨ (x1 ∧ ¬y1 ∧ z1) ∨ (x1 ∧ y1 ∧ ¬z1) = 1

(¬x2 ∧ y2 ∧ z2) ∨ (x2 ∧ ¬y2 ∧ z2) ∨ (x2 ∧ y2 ∧ ¬z2) = 1

(¬x3 ∧ y3 ∧ z3) ∨ (x3 ∧ ¬y3 ∧ z3) ∨ (x3 ∧ y3 ∧ ¬z3) = 1

(¬x4 ∧ y4 ∧ z4) ∨ (x4 ∧ ¬y4 ∧ z4) ∨ (x4 ∧ y4 ∧ ¬z4) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных

x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение.

Рассмотрим первое уравнение. Ему удовлетворяют следующие наборы переменных x1, x2, x3, x4: 1111, 0111, 0011, 0001, 0000.

Рассмотрим оставшиеся уравнения для первого набора x1, x2, x3, x4: 1111. Во втором уравнении первая скобка будет равна 0. Из второй и третьей скобок ясно, что переменные y1 и z1 могут принимать значения 01 или 10. Имеем два набора решений второго уравнения. Аналогично для третьего, четвёртого и пятого уравнений. Таким образом, для набора x1, x2, x3, x4: 1111, получаем 16 наборов переменных y1, y2, y3, y4, z1, z2, z3, z4 (см. рис).

Рассмотрим второй набор переменных x1, x2, x3, x4: 0111. В этом случае из второго уравнения ясно, что переменные y1 и z1 могут принимать значения 11. Для оставшихся уравнений ситуация аналогична первому набору. Таким образом, для набора x1, x2, x3, x4: 0111, получаем 8 наборов переменных y1, y2, y3, y4, z1, z2, z3, z4 (см. рис).

Проведя аналогичные рассуждения для наборов 0011, 0001 и 0000, получаем, соответственно 4, 2 и 1 набор переменных y1, y2, y3, y4, z1, z2, z3, z4 соответственно.

Всего имеем 16 + 8 + 4 + 2 + 1 = 31 набор переменных x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, которые удовлетворяют всем уравнениям.

 

Ответ: 31.


Аналоги к заданию № 6788: 6820 Все