Дан фрагмент таблицы истинности выражения F.
| x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | F |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
Каким из приведённых ниже выражений может быть F?
1) ¬x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7 ∨ ¬x8
2) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8
3) ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8
4) x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 ∨ x8
Сначала выясним, является F конъюнкцией или дизъюнкцией.
Каковы бы ни были логические переменные х1, х2, ... х8 и отрицания к ним, их конъюнкция может быть равна 1 только в одном случае — когда все они равны 1. Из таблицы истинности следует, что функция F принимает значение 1 для одного набора переменных и их отрицаний. Таким образом, F — конъюнкция. Следовательно, первый и четвёртый варианты ответа не подходят.
Подставим второй вариант ответа. В третьей строке данной таблицы значение F равно 1. Это значит, что все переменные из x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 должны быть равны 1. Значит, второй вариант не подходит.
Подставим третий вариант ответа. В третьей строке данной таблицы значение F равно 1. Это значит, что все переменные из ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 должны быть равны 1. Значит, третий вариант подходит.
Проверим первую строку таблицы. Конъюнкция равна нулю в том случае, когда хотя бы одна из переменных ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 равна 0. И такая переменная есть: ¬x7 = 0.
Проверим вторую строку таблицы. Конъюнкция равна нулю в том случае, когда хотя бы одна из переменных ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 равна 0. И такая переменная есть: ¬x8 = 0.
Правильный ответ указан под номером 3.

