СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 26 № 6201

Два игрока, Паша и Вова, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или добавить в кучу 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 52. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 52 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 51.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при которых Паша не может выиграть за один ход, но при любом ходе Паши Вова может выиграть своим первым ходом. Опишите выигрышную стратегию Вовы.

2. Укажите два значения S, при котором у Паши есть выигрышная стратегия, причём (а) Паша не может выиграть за один ход, но (б) Паша может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанного значения S опишите выигрышную стратегию Паши.

3. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

Решение.

а) Паша может выиграть первым ходом, если S = 42, ..., 51. Во всех случаях можно добавить в кучу 10 камней. При меньших значениях S за один ход нельзя получить кучу, в которой больше 51 камня.

б) Вова может выиграть первым ходом (как бы ни играл Паша), если исходно в куче будет S = 41 камень. Тогда после первого хода Паши в куче будет 42 камня или 51 камень. В обоих случаях Вова может добавить в кучу 10 камней и выиграть первым ходом.

 

Возможные значения S : 31 и 40. В этих случаях Паша, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 41 камня. Эта позиция разобрана в п. 16. В ней игрок, который будет ходить (теперь это Вова), выиграть не может, а его противник (то есть Паша) следующим ходом выиграет.

Возможное значение S : 39. После первого хода Паши в куче будет 40 или 49 камней. Если в куче станет 49 камней, Вова добавит в кучу 10 камней и выиграет первым ходом. Ситуация, когда в куче 40 камней, разобрана в п. 2. В этой ситуации игрок, который будет ходить (теперь это Вова), выигрывает своим вторым ходом.

В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции (в них выигрывает Вова) подчёркнуты. На рисунке это же дерево изображено в графическом виде (оба способа изображения дерева допустимы).