Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, включает в себя 4 команды-приказа и 4 команды проверки условия.
Команды-приказы:
| вверх | вниз | влево | вправо |
При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →.
Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится, и программа прервётся.
Другие 4 команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:
| сверху свободно | снизу свободно | слева свободно | справа свободно |
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?
НАЧАЛО
ПОКА справа свободно ИЛИ снизу свободно
ЕСЛИ справа свободно
ТО вправо
ИНАЧЕ вниз
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
1) 14
2) 18
3) 20
4) 22
Один из главных приёмов в решении этой задачи — проверять клетки группами, а не по одной.
При данной программе РОБОТ поступает следующим образом: сперва РОБОТ проверяет, свободна ли клетка справа или снизу от него. Если это так, то РОБОТ переходит к первому действию внутри цикла. В этом цикле если у правой стороны клетки, в которой находится РОБОТ, нет стены, он двигается вправо, в противном случае он перемещается вниз. После этого возвращается к началу внешнего цикла.
Проанализировав эту программу, приходим к выводу, что РОБОТ не может разбиться.
Проверив все клетки по выведенному нами правилу движения РОБОТА, выясняем, что число клеток, удовлетворяющих условию задачи равно 20: A2-D2, D1-F1, E2, F2, D6-F6, A1-C1, D3-F3.

