Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости, включает в себя 4 команды-приказа и 4 команды проверки условия.
Команды-приказы:
| вверх | вниз | влево | вправо |
При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →.
Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится, и программа прервётся.
Другие 4 команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ:
| сверху свободно | снизу свободно | слева свободно | справа свободно |
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка А1)?
НАЧАЛО
ПОКА слева свободно ИЛИ сверху свободно
ЕСЛИ слева свободно
ТО влево
ИНАЧЕ вверх
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
Один из главных приёмов в решении этой задачи — проверять клетки группами, а не по одной. В данной программе РОБОТ поступает следующим образом: сперва РОБОТ проверяет, свободна ли клетка слева или сверху от него. Если это так, то РОБОТ переходит к первому действию внутри цикла. В этом цикле если у левой стороны клетки, в которой находится РОБОТ, нет стены, он двигается влево, в противном случае он перемещается вверх. После этого возвращается к началу внешнего цикла. Проанализировав эту программу, приходим к выводу, что РОБОТ не может разбиться.
Проверив все клетки по выведенному нами правилу движения РОБОТА, выясняем, что число клеток, удовлетворяющих условию задачи, равно 21: A1-A6, A6-F6, A1-D1, E3, F3, D2-F2, B2, C2.

