Сколько существует различных наборов значений логических переменных x1, x2, ... x10, которые удовлетворяют всем перечисленным ниже условиям?
((x1 ≡ x2) ∨ (x3 ≡ x4)) ∧ (¬(x1 ≡ x2) ∨ ¬(x3 ≡ x4)) = 1
((x3 ≡ x4) ∨ (x5 ≡ x6)) ∧ (¬(x3 ≡ x4) ∨ ¬(x5 ≡ x6)) = 1
...
((x7 ≡ x8) ∨ (x9 ≡ x10)) ∧ (¬(x7 ≡ x8) ∨ ¬(x9 ≡ x10)) = 1
В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x10 при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Построим древо решений первого уравнения:
Заметим, что выражение (x3 ≡ x4) в двух случаях равно 1 и в двух случаях равно 0. Таким образом, одно уравнение имеет восемь решений.
Второе уравнение связано с первым только через выражение (x3 ≡ x4). Построим древо решений второго уравнения:
Для каждого из значений 0 и 1 выражения (x3 ≡ x4) существует четыре набора переменных x1, x2,...,x4, удовлетворяющих первому уравнению (см. первый рисунок). Таким образом, система из двух уравнений имеет 4 · 4 = 16 решений.
Третье уравнение связано со вторым только через выражение (x5 ≡ x6). Построим древо решений третьего уравнения:
Для каждого из значений 0 и 1 выражения (x5 ≡ x6) существует 2 · 4 = 8 наборов переменных x1, x2,...,x6, удовлетворяющих первому уравнению (см. первый и второй рисунок). Таким образом, система из трёх уравнений имеет 8 · 4 = 32 решения, система из четырёх — 64.
Ответ: 64.

