Задания
Версия для печати и копирования в MS Word
Тип Д23 № 5254
i

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, x6, x7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

 

(x1≡x2)—>(x2≡x3) = 1

(x2≡x3)—>(x3≡x4) = 1

...

(x5≡x6)—>(x6≡x7) = 1

 

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, x6, x7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Спрятать решение

Ре­ше­ние.

За­пи­шем пе­ре­мен­ные в строч­ку: x1x2x3x4x5x6x7. Им­пли­ка­ция ложна толь­ко в том слу­чае, когда из ис­ти­ны сле­ду­ет ложь. Усло­вие не вы­пол­ня­ет­ся, если в ряду после оди­на­ко­вых цифр при­сут­ству­ет дру­гая цифра. На­при­мер, "11101..." что озна­ча­ет не­вы­пол­не­ние вто­ро­го усло­вия.

 

Рас­смот­рим ком­би­на­ции пе­ре­мен­ных, удо­вле­тво­ря­ю­щие всем усло­ви­ям. Вы­пи­шем ва­ри­ан­ты, при ко­то­рых все цифры че­ре­ду­ют­ся, таких два: 1010101 и 0101010. Те­перь для пер­во­го ва­ри­ан­та, на­чи­ная с конца, будем уве­ли­чи­вать ко­ли­че­ство по­вто­ря­ю­щих­ся под­ряд цифр(на­столь­ко, на­сколь­ко это воз­мож­но). Вы­пи­шем по­лу­чен­ные ком­би­на­ции: "1010111; 1011111..." таких ком­би­на­ций во­семь. Ана­ло­гич­но для вто­ро­го ва­ри­ан­та: "0101011; 0101111...". Учтём, что при подсчёте ком­би­на­ция для вто­ро­го ва­ри­ан­та ком­би­на­ции 0000000 и 1111111 были учте­ны два­жды. Таким об­ра­зом, по­лу­ча­ем 8 + 8 − 2 = 14 ре­ше­ний.

 

Ответ: 14.


Аналоги к заданию № 5222: 5254 Все