СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
Информатика
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 23 № 5254

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, x6, x7, которые удовлетворяют всем перечисленным ниже условиям?

 

(x1≡x2)—>(x2≡x3) = 1

(x2≡x3)—>(x3≡x4) = 1

...

(x5≡x6)—>(x6≡x7) = 1

 

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, x3, x4, x5, x6, x7, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Решение.

Запишем переменные в строчку: x1x2x3x4x5x6x7. Импликация ложна только в том случае, когда из истины следует ложь. Условие не выполняется, если в ряду после одинаковых цифр присутствует другая цифра. Например, "11101..." что означает невыполнение второго условия.

 

Рассмотрим комбинации переменных, удовлетворяющие всем условиям. Выпишем варианты, при которых все цифры чередуются, таких два: 1010101 и 0101010. Теперь для первого варианта, начиная с конца, будем увеличивать количество повторяющихся подряд цифр(настолько, насколько это возможно). Выпишем полученные комбинации: "1010111; 1011111..." таких комбинаций восемь. Аналогично для второго варианта: "0101011; 0101111...". Учтём, что при подсчёте комбинация для второго варианта комбинации 0000000 и 1111111 были учтены дважды. Таким образом, получаем 8 + 8 − 2 = 14 решений.

 

Ответ: 14.


Аналоги к заданию № 5222: 5254 Все