СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 26 № 4882

Два игрока, Петя и Ваня, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 2, а во второй — 3 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первый ход делает Петя. Ход состоит в том, что игрок или удваивает число камней в какой-то куче, или добавляет 3 камня в какую-то кучу. Игра завершается в тот момент, когда количество камней в одной из куч становится не менее 15. Если в момент завершения игры количество камней в одной из куч не менее 19, то выиграл Ваня, в противном случае — Петя. Кто выигрывает при безошибочной игре обоих игроков? Каким должен быть первый ход выигрывающего игрока?

 

Ответ обоснуйте.

Решение.

Выигрывает Петя, своим первым ходом он должен удвоить количество камней во второй куче. Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделённые запятой. Эти числа соответствуют количеству камней на каждом этапе игры в первой и второй кучах соответственно.

Таблица содержит все возможные варианты ходов второго игрока. Из неё видно, что при любом ответе второго игрока у первого имеется ход, приводящий к победе.