Задания
Версия для печати и копирования в MS Word
Тип Д13 B13 № 33483
i

На ри­сун­ке пред­став­ле­на схема дорог, свя­зы­ва­ю­щих пунк­ты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П, Р, С. По каж­дой до­ро­ге можно пе­ре­дви­гать­ся толь­ко в на­прав­ле­нии, ука­зан­ном стрел­кой. Сколь­ко су­ще­ству­ет раз­лич­ных путей из пунк­та А в пункт С, про­хо­дя­щих через пункт Н?

Спрятать решение

Ре­ше­ние.

Ко­ли­че­ство путей до го­ро­да Х = ко­ли­че­ство путей до­брать­ся в любой из тех го­ро­дов, из ко­то­рых есть до­ро­га в Х.

При этом если путь дол­жен не про­хо­дить через какой-то город, нужно про­сто не учи­ты­вать этот город при подсчёте сумм. А если город на­о­бо­рот обя­за­тель­но дол­жен ле­жать на пути, тогда для го­ро­дов, в ко­то­рые из нуж­но­го го­ро­да идут до­ро­ги, в сум­мах нужно брать толь­ко этот город.

С по­мо­щью этого на­блю­де­ния по­счи­та­ем по­сле­до­ва­тель­но ко­ли­че­ство путей до каж­до­го из го­ро­дов:

А = 1

Г = А = 1

Б = А = 1

В = А + Б = 2

Д = Б = 1

И = Г = 1

Е = А + Б + В + Г + И + Д = 7

Ж = Д + Е + И = 9

Н = Ж + И = 10

М = Н = 10 (Ж, Л и К не рас­смат­ри­ва­ем, по­сколь­ку путь дол­жен про­хо­дить через Н)

П = М = 10

Р = М = 10

С = М + П + Р = 30

 

При­ме­ча­ние. Не­об­хо­ди­мо найти ко­ли­че­ство раз­лич­ных путей из го­ро­да А в город С, про­хо­дя­щих через город Н.

 

Ответ: 30.

Раздел кодификатора ФИПИ: 1.3.1 Опи­са­ние ре­аль­но­го объ­ек­та и про­цес­са