На рисунке — схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город З?
Начнем считать количество путей с конца маршрута – с города З. NX — количество различных путей из города А в город X, N — общее число путей.
В "З" можно приехать из В, Ж, или Е, поэтому N = NЗ = NЕ + NВ + N Ж (1)
Аналогично:
NЕ = NД + NВ;
NВ = NБ + NА + NГ;
NЖ = NВ + NГ.
Добавим еще вершины:
NД = NБ + NВ;
NБ = NА = 1;
NГ = NА = 1;
Преобразуем вершины:
NЕ = NД + NВ = 4 + 3 = 7;
NВ = NБ + NА + NГ = 1 + 1 + 1 = 3;
NЖ = NВ + NГ = 3 + 1 = 4.
NД = NБ + NВ = 1 + 3 = 4;
NБ = NА = 1;
NГ = NА = 1;
Подставим в формулу (1):
N = NК = 7 + 3 + 4 = 14.

