СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 23 № 3155

Сколько различных решений имеет уравнение

 

((K ∨ L) → (L ∧ M ∧ N)) = 0

 

где K, L, M, N – логические переменные? В Ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве Ответа Вам нужно указать количество таких наборов.

Решение.

перепишем уравнение, используя более простые обозначения операций:

 

((K + L) → (L · M · N)) = 0

 

1) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

 

K + L = 1 и L · M · N = 0

 

2) из первого уравнения следует, что хотя бы одна из переменных, K или L, равна 1 (или обе вместе); поэтому рассмотрим три случая

 

3) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

 

4) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

 

5) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

 

6) всего получаем 4 + 3 + 3 = 10 решений.

 

Ответ: 10