Задания
Версия для печати и копирования в MS Word
Тип Д23 № 3155
i

Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

 

((K ∨ L) → (L ∧ M ∧ N)) = 0

 

где K, L, M, N – ло­ги­че­ские пе­ре­мен­ные? В От­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве От­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Спрятать решение

Ре­ше­ние.

пе­ре­пи­шем урав­не­ние, ис­поль­зуя более про­стые обо­зна­че­ния опе­ра­ций:

 

((K + L) → (L · M · N)) = 0

 

1)  из таб­ли­цы ис­тин­но­сти опе­ра­ции «им­пли­ка­ция» (см. первую за­да­чу) сле­ду­ет, что это ра­вен­ство верно тогда и толь­ко тогда, когда од­но­вре­мен­но

 

K + L = 1 и L · M · N = 0

 

2)  из пер­во­го урав­не­ния сле­ду­ет, что хотя бы одна из пе­ре­мен­ных, K или L, равна 1 (или обе вме­сте); по­это­му рас­смот­рим три слу­чая

 

3)  если K = 1 и L = 0, то вто­рое ра­вен­ство вы­пол­ня­ет­ся при любых М и N; по­сколь­ку су­ще­ству­ет 4 ком­би­на­ции двух ло­ги­че­ских пе­ре­мен­ных (00, 01, 10 и 11), имеем 4 раз­ных ре­ше­ния

 

4)   если K = 1 и L = 1, то вто­рое ра­вен­ство вы­пол­ня­ет­ся при М · N = 0; су­ще­ству­ет 3 таких ком­би­на­ции (00, 01 и 10), имеем еще 3 ре­ше­ния

 

5)  если K = 0, то обя­за­тель­но L = 1 (из пер­во­го урав­не­ния); при этом вто­рое ра­вен­ство вы­пол­ня­ет­ся при М · N = 0; су­ще­ству­ет 3 таких ком­би­на­ции (00, 01 и 10), имеем еще 3 ре­ше­ния

 

6)  всего по­лу­ча­ем 4 + 3 + 3 = 10 ре­ше­ний.

 

Ответ: 10