Миша заполнял таблицу истинности функции (x ∧ ¬y) ∨ (x ≡ z) ∨ ¬w, но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
| (x ∧ ¬y) ∨ (x ≡ z) ∨ ¬w | ||||
|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | |||
| 1 | 0 | 1 | 0 |
Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция задана выражением ¬x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
| ¬x ∨ y | ||
|---|---|---|
| 0 | 1 | 0 |
В этом случае первому столбцу соответствует переменная y, а второму столбцу — переменная x. В ответе следует написать yx.
Рассмотрим данное выражение. Преобразуем логическое выражение (x ∧ ¬y) ∨ (x ≡ z) ∨ ¬w. и получим систему, при которой оно ложно:
Из первой строки таблицы можно заметить, что переменной w может соответствовать только второй или третий столбцы. Из третьей строки таблицы можно заметить, что этой же переменной могут соответствовать первый, второй или четвёртый столбцы. Отсюда можно заключить, что переменной w соответствует второй столбец.
Предположим, что первый столбец соответствует переменной x, в таком случае из первой строки можно заключить, что третий столбец соответствует переменной z, а четвёртый — переменной y. При таком соответствии не получаем противоречий ни со второй, ни с третьей строкой таблицы.
Ответ: xwzy.
----------
Дублирует задание 19051.

