СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 14 № 1811

Исполнитель МАШИНКА «живет» в ограниченном прямоугольном лабиринте на клетчатой плоскости, изображенном на рисунке. Серые клетки — возведенные стены, светлые — свободные клетки, по которым МАШИНКА может свободно передвигаться. По краю поля лабиринта также стоит возведенная стенка с нанесенными номерами и буквами для идентификации клеток в лабиринте.

 

 

Система команд исполнителя МАШИНКА:

вверх вниз влево вправо

При выполнении любой из этих команд МАШИНКА перемещается на одну клетку соответственно (по отношению к наблюдателю): вверх ↑, вниз ↓, влево ←, вправо →. Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится МАШИНКА (также по отношению к наблюдателю):

сверху
свободно
снизу
свободно
слева
свободно
справа
свободно

 

Цикл

ПОКА < условие > команда

выполняется, пока условие истинно, иначе происходит переход на следующую строку.

При попытке передвижения на любую серую клетку МАШИНКА разбивается о стенку.

Сколько клеток приведенного лабиринта соответствуют требованию, что, стартовав в ней и выполнив предложенную ниже программу, МАШИНКА не разобьется?

 

НАЧАЛО

ПОКА <снизу свободно> вниз

ПОКА <справа свободно> вправо

вверх

вправо

КОНЕЦ

Решение.

Начав движение из любой клетки столбца А, клеток В7, В8, С7, С8 Машинка разобьется, выполняя команду вправо. Стартовав из клеток В1−В3, Машинка уцелеет. Начав движение из любой клетки первых двух строк, начиная со столбца С и до столбца I, Машинка разобьется. Стартовав из любой клетки столбца J, Машинка разобьется, выполняя команду вверх. Начав движение из любой клетки столбца K, L, M, N Машинка разобьется, выполняя команду вправо.

Проанализировав «пещеру» (участок лабиринта в центре, из которого только один выход), приходим к выводу, что Машинка не разобьется, стартовав из столбцов D и E, H, I. В каждом из них по три клетки, а в столбце I — 2. Следовательно, ответ 3 + 9 + 2 = 14.