СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 5 № 16032

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 0; для буквы Б – кодовое слово 10. Какова наименьшая возможная сумма длин кодовых слов для букв В, Г, Д, Е?

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Решение.

Для двух букв кодовые слова уже известны, осталось подобрать для оставшихся двух букв такие кодовые слова, которые будут являться кратчайшими и удовлетворять условию Фано.

Кодовые слова не могут начинаться с 0, поскольку 0 является кодовым словом для буквы А. Кодовым словом для буквы В будет являться 1100, кодовые слова 11, 110 и 111 использовать нельзя, поскольку не получится закодировать остальные буквы таким образом, чтобы возможная сумма длин кодовых слов для букв В, Г, Д и Е была наименьшей. Кодовым словом для буквы Г будет являться 1101, для буквы Д — 1110, а для буквы Е — 1111.

Таким образом, сумма кратчайших кодовых слов для букв В, Г, Д и е будет равняться 4 + 4 + 4 + 4 = 16.

 

Ответ: 16.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2019 по информатике.