Элементами множеств А, P, Q являются натуральные числа, причём P = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}, Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}.
Известно, что выражение
((x ∈ P) → (x ∈ A)) ∨ (¬(x ∈ A) → ¬(x ∈ Q))
истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.
Раскроем две импликации. Получим:
(¬(x ∈ P) ∨ (x ∈ A)) ∨ ((x ∈ A) ∨ ¬(x ∈ Q))
Упростим:
(¬(x ∈ P) ∨ (x ∈ A) ∨ ¬(x ∈ Q))
¬(x ∈ P) ∨ ¬(x ∈ Q) дают 0 только, когда число лежит в обоих множествах. Значит, чтобы все выражение было истинно нам нужно все числа лежащие в P и Q занести в А. Такие числа 6, 12, 18. Их сумма 36.
Ответ: 36.

