На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М.
По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.
Сколько существует различных путей из города А в город М, проходящих через город В?
Количество путей до города Х = количество путей добраться в любой из тех городов, из которых есть дорога в Х.
При этом, если путь не должен проходить через какой-то город, нужно просто не учитывать этот город при подсчёте сумм. А если город, наоборот, обязательно должен лежать на пути, тогда для городов, в которые из нужного города идут дороги, в суммах нужно брать только этот город.
С помощью этого наблюдения посчитаем последовательно количество путей до каждого из городов:
А = 1
Б = А = 1
Д = А = 1
Г = А + Д = 1 + 1 = 2
В = А + Б + Г = 4
Е = В = 4 (Б не учитываем, т. к. там не проходим через В)
З = В = 4 (Д и Г не учитываем по тому же принципу)
Ж = В + Е + З = 4 + 4 + 4 = 12
И = Е + Ж + З = 4 + 12 + 4 = 20
К = Л = И =20
М = К + Л = 40
Ответ: 40.

