Задания
Версия для печати и копирования в MS Word
Тип 1 № 10306
i

На ри­сун­ке схема дорог Н-⁠ского рай­о­на изоб­ра­же­на в виде графа, в таб­ли­це со­дер­жат­ся све­де­ния о дли­нах этих дорог (в ки­ло­мет­рах).

 

П1П2П3П4П5П6П7
П14015
П2403548
П3106511
П415352233
П51050
П64865225040
П7113340

 

Так как таб­ли­цу и схему ри­со­ва­ли не­за­ви­си­мо друг от друга, ну­ме­ра­ция населённых пунк­тов в таб­ли­це никак не свя­за­на с бук­вен­ны­ми обо­зна­че­ни­я­ми на графе. Опре­де­ли­те длину до­ро­ги из пунк­та Б в пункт Д. В от­ве­те за­пи­ши­те целое число.

Спрятать решение

Ре­ше­ние.

Есть толь­ко один пункт, из ко­то­ро­го ведёт 5 дорог,  — это В, а в таб­ли­це  — П6.

Из А ведёт две до­ро­ги, и одна из них  — в В. В таб­ли­це та­ко­му со­от­вет­ству­ет П5.

Из Б ведёт три до­ро­ги, причём есть до­ро­ги в А и в В, в таб­ли­це под такое под­хо­дит толь­ко П3.

Из Д три до­ро­ги, две из ко­то­рых  — в Б и в В, в таб­ли­це толь­ко один пункт та­ко­му со­от­вет­ству­ет  — П7.

Таким об­ра­зом, Б  — это П3, а Д  — П7. Длина до­ро­ги между П3 и П7  — 11.

 

Ответ: 11.


Аналоги к заданию № 10279: 10306 Все

Раздел кодификатора ФИПИ: 1.3.1 Опи­са­ние ре­аль­но­го объ­ек­та и про­цес­са