Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — информатика
Задания
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, пусть в одной куче 10 кам­ней, а в дру­гой 7 кам­ней; такую по­зи­цию в игре будем обо­зна­чать (10, 7). Тогда за один ход можно по­лу­чить любую из четырёх по­зи­ций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 55. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший такую по­зи­цию, что в кучах всего будет 55 или боль­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 5 кам­ней, во вто­рой куче – S кам­ней; 1 ≤ S ≤ 49.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка.

Вы­пол­ни­те сле­ду­ю­щие за­да­ния. Во всех слу­ча­ях обос­но­вы­вай­те свой ответ.

1.  а) Ука­жи­те все такие зна­че­ния числа S, при ко­то­рых Петя может вы­иг­рать за один ход, и со­от­вет­ству­ю­щие вы­иг­ры­ва­ю­щие ходы. Если при не­ко­то­ром зна­че­нии S Петя может вы­иг­рать не­сколь­ки­ми спо­со­ба­ми,

до­ста­точ­но ука­зать один вы­иг­ры­ва­ю­щий ход.

б)  Сколь­ко су­ще­ству­ет зна­че­ний S, при ко­то­рых Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом?

2.  Ука­жи­те такое зна­че­ние S, при ко­то­ром у Пети есть вы­иг­рыш­ная стра­те­гия, причём од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− Петя не может вы­иг­рать за один ход;

− Петя может вы­иг­рать своим вто­рым ходом не­за­ви­си­мо от того, как будет хо­дить Ваня.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Пети.

3.  Ука­жи­те зна­че­ние S, при ко­то­ром од­но­вре­мен­но вы­пол­ня­ют­ся два усло­вия:

− у Вани есть вы­иг­рыш­ная стра­те­гия, поз­во­ля­ю­щая ему вы­иг­рать пер­вым или вто­рым ходом при любой игре Пети;

− у Вани нет стра­те­гии, ко­то­рая поз­во­лит ему га­ран­ти­ро­ван­но вы­иг­рать пер­вым ходом.

Для ука­зан­но­го зна­че­ния S опи­ши­те вы­иг­рыш­ную стра­те­гию Вани. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при этой вы­иг­рыш­ной стра­те­гии Вани (в виде ри­сун­ка или таб­ли­цы). На рёбрах де­ре­ва ука­зы­вай­те ходы,

в узлах ука­зы­вай­те по­зи­ции. В за­да­ни­ях 2 и 3 до­ста­точ­но ука­зать одно зна­че­ние S и объ­яс­нить, по­че­му это

зна­че­ние удо­вле­тво­ря­ет усло­вию со­от­вет­ству­ю­ще­го за­да­ния.