Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — информатика
Задания
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежит куча кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может: убрать из кучи три камня, или убрать из кучи семь кам­ней, или умень­шить ко­ли­че­ство кам­ней в куче в че­ты­ре раза (ко­ли­че­ство кам­ней, по­лу­чен­ное при де­ле­нии, округ­ля­ет­ся до мень­ше­го).

На­при­мер, из кучи в 21 ка­мень за один ход можно по­лу­чить кучу из 18, 14 или 5 кам­ней.

Игра за­вер­ша­ет­ся, когда ко­ли­че­ство кам­ней в куче ста­но­вит­ся не более 21.

По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший кучу, в ко­то­рой будет 21 или мень­ше кам­ней. В на­чаль­ный мо­мент в куче было S кам­ней,  S боль­ше или равно 22.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка.

Ука­жи­те ми­ни­маль­ное зна­че­ние S, при ко­то­ром Петя не может вы­иг­рать за один ход, но при любом ходе Пети Ваня может вы­иг­рать своим пер­вым ходом.