№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора Ф ИПИ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Игра в камни, два варианта хода
1.

Два игрока, Паша и Вова, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 30.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S. при котором Паша не может выиграть за один ход, но при любом ходе Паши Вова может выиграть своим первым ходом. Опишите выигрышную стратегию Вовы.

2. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши.

3. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

2.

Два игрока, Паша и Вова, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 41. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 41 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 40.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S. при котором Паша не может выиграть за один ход, но при любом ходе Паши Вова может выиграть своим первым ходом. Опишите выигрышную стратегию Вовы.

2. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши.

3. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

3.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 100. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 101 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 100.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани. Представьте его в виде рисунка или таблицы. Для каждого ребра дерева укажите, кто делает ход, для каждого узла — количество камней в позиции.

4.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 200. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 201 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 200.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани. 

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

5.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

 

Игра завершается в тот момент, когда количество камней в куче становится более 200. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 201 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 200.

 

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани. 

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

 

3. Укажите такое значение S, при котором

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

6.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или утроить количество камней в куче, а затем убрать из кучи 1 камень. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

 

Игра завершается в тот момент, когда количество камней в куче становится более 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 35 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 34.

 

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани. 

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

 

3. Укажите такое значение S, при котором

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

7.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или возвести количество камней в квадрат. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 49 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится 100 или более. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 100 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 99.

Говорят, что игрок имеет выигрышную стратегию, если он может выигратьпри любых ходах противника. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причем (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах - количество камней в позиции.

8.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или возвести количество камней в квадрат. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 49 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится 100 или более. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 100 или больше камней.

В начальный момент в куче было S камней, 1 < S < 99.

 

Говорят, что игрок имеет выигрышную стратегию, если он может выигратьпри любых ходах противника. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причем (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах - количество камней в позиции.

9.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

 

Игра завершается в тот момент, когда количество камней в куче становится не менее 66. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 66 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 65.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

 

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

3. Укажите значение S, при котором:

 

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

 

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

10.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

 

Игра завершается в тот момент, когда количество камней в куче становится не менее 48. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 48 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 47.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

 

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

3. Укажите значение S, при котором:

 

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

 

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

11.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

 

Игра завершается в тот момент, когда количество камней в куче становится не менее 48. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 48 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 47.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

 

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

3. Укажите значение S, при котором:

 

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

 

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

12.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

 

Игра завершается в тот момент, когда количество камней в куче становится не менее 66. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 66 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 65.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

 

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

3. Укажите значение S, при котором:

 

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

 

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

13.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 39 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 38.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

14.

Два игрока, Паша и Вова, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или добавить в кучу 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 52. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 52 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 51.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при которых Паша не может выиграть за один ход, но при любом ходе Паши Вова может выиграть своим первым ходом. Опишите выигрышную стратегию Вовы.

2. Укажите два значения S, при котором у Паши есть выигрышная стратегия, причём (а) Паша не может выиграть за один ход, но (б) Паша может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанного значения S опишите выигрышную стратегию Паши.

3. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

15.

Два игрока, Паша и Вова, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или добавить в кучу 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 52. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 52 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 51.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при которых Паша не может выиграть за один ход, но при любом ходе Паши Вова может выиграть своим первым ходом. Опишите выигрышную стратегию Вовы.

 

2. Укажите два значения S, при котором у Паши есть выигрышная стратегия, причём (а) Паша не может выиграть за один ход, но (б) Паша может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанного значения S опишите выигрышную стратегию Паши.

 

3. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

16.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 47. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 47 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤46.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

17.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 65. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 65 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤64.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

18.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 65. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 65 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤64.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

19.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤68.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

20.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 73 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 72.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

21.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 25. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 25 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 24.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

22.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 28.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

23.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или два камня или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 17 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 75. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 75 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 74.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть в один ход? Укажите все такие значения.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите три таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, однако у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

24.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 28.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

25.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 102. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 102 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 101.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

26.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 106. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 106 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 105.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

 

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

27.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 22. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 22 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 21.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причем (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

 

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

28.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в 3 раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 30. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 30 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 29.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

29.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 98. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 98 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 97.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

 

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

30.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 94. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 94 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 93.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

 

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

31.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в шесть раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 60 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 361. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 362 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 360.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

32.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в шесть раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 60 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 365. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 366 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 365.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

33.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

34.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем добавить ещё один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 31 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 32 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 31.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

35.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 28 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 30. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней.

В начальный момент в куче было S камней, 2 ≤ S ≤ 30.

 

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1.

        а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

       б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

        – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

        – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.

36.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, 2 ≤ S ≤ 39.

 

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.

       б) Укажите такое значение S, при котором Петя не может выиграть за

один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети.

3. Укажите такое значение S, при котором

        – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом

        – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.

37.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра заканчивается, когда в куче не меньше 42 камней.

При этом, если число камней в куче не превышает 74, то побеждает игрок, сделавший последний ход, иначе выигрывает его оппонент. В начальный момент в куче было S камней; 1 ≤ S ≤ 41.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Опишите его стратегию.

б) У кого есть выигрышная стратегия при S = 38, 39, 40?

 

Задание 2

Кто из игроков имеет выигрышную стратегию при S = 19, 20?

 

Задание 3

Кто из игроков имеет выигрышную стратегию при S = 18?

 

В каждом случае опишите выигрышную стратегию. В задании 3 постройте дерево игры или таблицу, где ребрами являются сделанные ходы, а узлами - позиции камней.

38.

Паша и Валя играют в следующую игру: перед игроками лежит куча камней, каждый игрок за один ход может добавить в кучу 1 камень или удвоить количество камней в куче. Камни для ходов не ограничены. Выигрывает тот игрок, после хода которого в кучу оказалось 24 и более камней, но не более 38. Если после хода игрока в куче более 38 камней, выигрывает его соперник. Первым ходит Паша.

Пусть S — начальное количество камней в куче.

а) При каких значениях S Паша может выиграть первым ходом?

б) У кого есть выигрышная стратегия при S = 20, 21, 22.

в) У кого выигрышная стратегия при S = 10, 11?

г) У какого игрока выигрышная стратегия при S = 9? Нарисуйте дерево решений.

39.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или увеличить число камней в 2 раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 14 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 24. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 24 или больше камней. Но, если камней в куче становится больше 38, то проигрывает тот, кто сделал последний ход. Например, в куче было 20 камней. Паша, удвоив количество камней, получил 40. В таком случае выигрывает не Паша, а Валя.

В начальный момент в куче было S камней, 1 ≤ S ≤ 23.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуй те, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Кто имеет выигрышную стратегию при S = 22, 21, 20?

2. Кто имеет выигрышную стратегию при S = 10, 11?

3. Кто имеет выигрышную стратегию при S = 9? Опишите эту стратегию, постройте дерево ходов.

40.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или удвоить количество камней в куче. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 14 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче S становится не менее 22. Победителем считается игрок, сделавший последний ход, если в куче осталось не менее 22 камней, но не больше 34 камней. Если же после завершающего хода игрока в куче оказывается больше 34 камней, то игрок, сделавший последний ход — проигрывает.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1) а) При каких значениях Паша выиграет 1 ходом. б) Кто выиграет при S=20, 19, 18.

2) Кто выиграет при S=10, 9.

3) Кто выиграет при S=8. Нарисуйте дерево партий.

41.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 19.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания.

1. а) При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.

б) У кого из игроков есть выигрышная стратегия при S = 18, 17, 16? Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 9, 8? Опишите соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 7? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

42.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 65. Победителем считается игрок, сделавший последний ход, т. е. первым получивший кучу, в которой будет 65 или больше камней. В начальный момент в куче было S камней 1 ≤ S ≤ 64.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход, и соответствующие выигрывающие ходы. Если при некотором значении S Петя может выиграть несколькими способами, достаточно указать один выигрывающий ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная

стратегия, причём одновременно выполнены два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте ходы, в узлах указывайте позиции.

43.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу два камня или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 17 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 45. Если при этом в куче оказалось не более 112 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 40 камней и Паша утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 44. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания.

1. а) При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши.

б) У кого из игроков есть выигрышная стратегия при S = 37, 39, 41?

Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 13, 11? Опишите

соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 9? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

44.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу два камня или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 17 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 36. Если при этом в куче оказалось не более 85 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 30 камней и Паша утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 35.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания.

1. а) При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши.

б) У кого из игроков есть выигрышная стратегия при S = 28, 30, 32?

Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 10, 8?

Опишите соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 6? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

45.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 36. Если при этом в куче оказалось не более 98 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 33 камня и Паша утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 35.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания.

1. а) При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши.

б) У кого из игроков есть выигрышная стратегия при S = 34; 33; 32?

Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 11; 10?

Опишите соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 9? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

46.

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 33. Если при этом в куче оказалось не более 89 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 30 камней и Паша утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания.

1. а) При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши.

б) У кого из игроков есть выигрышная стратегия при S = 31; 30; 29?

Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 10; 9? Опишите соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 8? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

47.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 37. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 37 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 36.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. У кого из игроков есть выигрышная стратегия при S = 12? Опишите эту стратегию.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть за один ход, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого из указанных значений S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, однако у Вани нет стратегии, которая позволит ему гарантированно выиграть 1-м ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте в виде рисунка или таблицы дерево всех партий, возможных при этой выигрышной стратегии Вани. На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

48.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. У кого из игроков есть выигрышная стратегия при S = 12? Опишите эту стратегию.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть за один ход, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого из указанных значений S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, однако у Вани нет стратегии, которая позволит ему гарантированно выиграть 1-м ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте в виде рисунка или таблицы дерево всех партий, возможных при этой выигрышной стратегии Вани. На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

49.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

увеличить количество камней в куче в два раза или увеличить количество камней в куче в три раза.

 

Например, имея кучу из 10 камней, за один ход можно получить кучу из 20 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 62 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 61.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1. Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

Задание 2. Назовите все значения S, п ри к оторых В аня м ожет в ыиграть первым ходом, независимо от того, каким будет первый ход Пети. Опишите выигрышную стратегию Вани для этих значений S.

Задание 3. Назовите все значения S, п ри к оторых П етя н е м ожет в ыиграть первым ходом, но может выиграть вторым ходом независимо от того, как будет играть Ваня, причём в начальной позиции у Пети есть ровно один выигрывающий ход. Опишите выигрышную стратегию Пети для всех этих значений. Постройте (в виде рисунка или таблицы) дерево всех партий, возможных при этой стратегии для одного произвольного значения S. На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции. Дерево должно содержать только те партии, которые возможны при реализации выигрышной стратегии Пети.

50.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

увеличить количество камней в куче в два раза или увеличить количество камней в куче в три раза.

 

Например, имея кучу из 10 камней, за один ход можно получить кучу из 20 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 49. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 50 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 49.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

 

Выполните следующие задания.

 

Задание 1. Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

Задание 2. Назовите все значения S, при которых Ваня может выиграть первым ходом, независимо от того, каким будет первый ход Пети. Опишите выигрышную стратегию Вани для этих значений S.

Задание 3. Назовите все значения S, при которых Петя не может выиграть первым ходом, но может выиграть вторым ходом независимо от того, как будет играть Ваня, причём в начальной позиции у Пети есть ровно один выигрывающий ход. Опишите выигрышную стратегию Пети для всех этих значений. Постройте (в виде рисунка или таблицы) дерево всех партий, возможных при этой стратегии для одного произвольного значения S. На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции. Дерево должно содержать только те партии, которые возможны при реализации выигрышной стратегии Пети.

51.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в кучу один камень или

увеличить количество камней в куче в четыре раза.

 

Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или из 40 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 80. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 81 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 80.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.

52.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в кучу один камень или

увеличить количество камней в куче в четыре раза.

 

Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или из 40 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 64. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 65 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 64.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.

53.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в кучу один камень или

увеличить количество камней в куче в два раза.

 

Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или из 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 45. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 46 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 45.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.

54.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в кучу один камень или

увеличить количество камней в куче в два раза.

 

Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или из 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче превышает 53. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 54 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 53.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.

55.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

 

добавить в кучу два камня или

увеличить количество камней в куче в два раза.

 

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 80. Победителем считается игрок, сделавший последний ход, то есть первым получивший суммарно в обеих кучах 80 или более камней.

В начальный момент в первой куче было 7 камней, а во второй S камней, 1 ≤ S ≤ 72.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—Петя не может выиграть за один ход.

—Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором одновременно выполняются два условия:

—у Вани есть выигрышная стратегия, позволяющая ему выиграть своим первым или вторым ходом при любой игре Пети.

—у Вани нет стратегии, которая позволит ему гарантированно выиграть своим первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.

56.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень либо увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делатьходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 26.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 26 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 25.

Будем говорить, что игрок имеет выигрышную стратегию, если он может

выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполнены два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы).

В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.