№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора ФИПИ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Анализ пар значений
1.

Вам предлагается два задания с похожими условиями: задание А и задание Б. Вы можете решать оба задания или одно из них по своему выбору. Задание Б более сложное, его решение оценивается выше. Итоговая оценка выставляется как максимальная из оценок за задания А и Б.

 

Задание А. Имеется набор данных, состоящий из 6 пар положительных целых чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел не делилась на 3 и при этом была максимально возможной. Если получить требуемую сумму невозможно, в качестве ответа нужно выдать 0.

Напишите программу для решения этой задачи. В этом варианте задания оценивается только правильность программы, время работы и размер использованной памяти не имеют значения.

Максимальная оценка за правильную программу – 2 балла.

 

Задание Б. Имеется набор данных, состоящий из пар положительных целых чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел не делилась на 3 и при этом была максимально возможной. Если получить требуемую сумму невозможно, в качестве ответа нужно выдать 0.

Напишите программу для решения этой задачи.

Постарайтесь сделать программу эффективной по времени и используемой памяти (или хотя бы по одной из этих характеристик).

Программа считается эффективной по времени, если время работы программы пропорционально количеству пар чисел N, т. е. при увеличении N в k раз время работы программы должно увеличиваться не более чем в k раз.

Программа считается эффективной по памяти, если размер памяти, использованной в программе для хранения данных, не зависит от числа N и не превышает 1 килобайта.

Максимальная оценка за правильную программу, эффективную по времени и памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную по времени, но неэффективную по памяти, — 3 балла.

 

Как в варианте А, так и в варианте Б программа должна напечатать одно число — максимально возможную сумму, соответствующую условиям задачи (или 0, если такую сумму получить нельзя).

 

НАПОМИНАЕМ! Не забудьте указать, к какому заданию относится каждая из представленных Вами программ.

 

Перед текстом программы кратко опишите Ваш алгоритм решения, укажите использованный язык программирования и его версию (например, Free Pascal 2.6.4).

 

Входные данные

Для варианта А на вход программе подаётся шесть строк, каждая из которых содержит два натуральных числа, не превышающих 10 000.

Пример входных данных для варианта А:

1 3

5 12

6 9

5 4

3 3

1 1

 

Для варианта Б на вход программе в первой строке подаётся количество пар N (1 ≤ N ≤ 100 000). Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000.

Пример входных данных для варианта Б:

6

1 3

5 12

6 9

5 4

3 3

1 1

Пример выходных данных для приведённых выше примеров входных данных: 32

2.

Дан набор из N неотрицательных целых чисел, меньших 1000. Для каждого числа вычисляется сумма цифр его десятичной записи. Необходимо определить, какая сумма цифр чаще всего встречается у чисел этого набора. Если таких сумм несколько, нужно вывести наименьшую из них. Напишите эффективную по времени и по памяти программу для решения этой задачи. Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз. Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок. Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

 

Описание входных и выходных данных:

 

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 10 000). В каждой из последующих N строк записано одно неотрицательное число, меньшее 1000.

Пример входных данных:

5

4

15

24

18

31

Пример выходных данных для приведённого примера входных данных:

4

У чисел заданного набора чаще всего — по 2 раза — встречаются суммы 4 и 6, в ответе выводится меньшая из них.

3.

Дан набор из N неотрицательных целых чисел, меньших 1000. Для каждого числа вычисляется сумма цифр его десятичной записи. Необходимо определить, какая сумма цифр реже всего встречается у чисел этого набора. Если таких сумм несколько, нужно вывести наибольшую из них. Напишите эффективную по времени и по памяти программу для решения этой задачи. Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз. Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную ( не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла. Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

 

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок. Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 10 000). В каждой из последующих N строк записано одно неотрицательное число, меньшее 1000.

Пример входных данных:

5

4

15

24

18

60

Пример выходных данных для приведённого примера входных данных:

9

У чисел заданного набора реже всего — по одному разу — встречаются суммы 4 и 9, в ответе выводится бóльшая из них.

4.

Дан набор из N целых положительных чисел. Необходимо определить, какая цифра чаще всего встречается в десятичной записи чисел этого набора. Если таких цифр несколько, необходимо вывести их все в порядке убывания — от большей к меньшей.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз. Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию. Описание входных и выходных данных В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

 

Пример входных данных:

3

15

25

32

Пример выходных данных для приведённого выше примера входных данных:

5 2

 

В десятичной записи чисел заданного набора чаще всего — по 2 раза — встречаются цифры 2 и 5, в ответе они выведены в порядке убывания.

5.

Дан набор из N целых положительных чисел. Необходимо определить, какая цифра чаще всего встречается в десятичной записи чисел этого набора. Если таких цифр несколько, необходимо вывести наибольшую из них.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

 

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

 

Пример входных данных:

3

15

25

32

Пример выходных данных для приведённого выше примера входных данных:

5

В десятичной записи чисел заданного набора чаще всего — по 2 раза — встречаются цифры 2 и 5, большая из них — 5.

6.

Дан набор из N целых положительных чисел. Необходимо выбрать из набора произвольное количество чисел так, чтобы их сумма была как можно больше и при этом не делилась на 6. В ответе нужно указать количество выбранных чисел и их сумму, сами числа выводить не надо. Если получить нужную сумму невозможно, считается, что выбрано 0 чисел и их сумма равна 0.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетовряющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

3

1

2

3

В результате работы программа должна вывести два числа: сначала количество выбранных чисел, затем их сумму.

Пример выходных данных для приведённого выше примера входных данных:

2 5

В данном случае из предложенного набора нужно выбрать два числа (2 и 3), их сумма равна 5.

7.

Дан набор из N целых положительных чисел. Необходимо выбрать из набора произвольное количество чисел так, чтобы их сумма была как можно больше и при этом не делилась на 8. В ответе нужно указать количество выбранных чисел и их сумму, сами числа выводить не надо. Если получить нужную сумму невозможно, считается, что выбрано 0 чисел и их сумма равна 0.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

3

1

2

5

В результате работы программа должна вывести два числа: сначала количество выбранных чисел, затем их сумму.

Пример выходных данных для приведённого выше примера входных данных:

2 7

В данном случае из предложенного набора нужно выбрать два числа (2 и 5), их сумма равна 7.

8.

Назовём длиной числа количество цифр в его десятичной записи. Например, длина числа 2017 равна 4, а длина числа 7 равна 1. Дан набор из N целых положительных чисел, каждое из которых меньше 108. Необходимо определить, числа какой длины чаще всего встречаются в данном наборе и сколько в нём чисел этой длины. Если числа разной длины встречаются одинаково часто (и чаще чем числа любой другой длины), нужно выбрать большую длину. Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз. Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла. Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок. Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, меньшее, чем 108. Пример входных данных:

5

15

417

125

32

4801

Пример выходных данных для приведённого выше примера входных данных:

3 2

В данном наборе чаще всего (по 2 раза) встречаются числа длины 2 и 3. Выбираем большую длину, выводим саму длину (3) и количество чисел этой длины (2).

9.

Назовём длиной числа количество цифр в его десятичной записи. Например, длина числа 2017 равна 4, а длина числа 7 равна 1.

Дан набор из N целых положительных чисел, каждое из которых меньше 108. Необходимо определить, числа какой длины реже всего (но не менее одного раза) встречаются в данном наборе и сколько в нём чисел этой длины. Если числа разной длины встречаются одинаково часто (и реже, чем числа любой другой длины), нужно выбрать меньшую длину. Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N. Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число,

меньшее, чем 108.

Пример входных данных:

5

12

417

125

327

4801

Пример выходных данных для приведённого выше примера входных данных:

2 1

В данном наборе реже всего (по 1 разу) встречаются числа длины 2 и 4.

Выбираем меньшую длину, выводим саму длину (2) и количество чисел этой длины (1).

10.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен). Необходимо определить количество пар, для которых произведение элементов делится на 26.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10 000. В качестве результата программа должна напечатать одно число: количество пар, в которых произведение элементов кратно 26.

Пример входных данных:

4

2

6

13

39

Пример выходных данных для приведённого выше примера входных данных:

4

Пояснение. Из четырёх заданных чисел можно составить 6 попарных произведений: 2·6, 2·13, 2·39, 6·13, 6·39, 13·39 (результаты: 12, 26, 78, 78, 234, 507). Из них на 26 делятся 4 произведения (2·13=26; 2·39=78; 6·13=78; 6·39=234).

Требуется написать эффективную по времени и по памяти программу для решения описанной задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну программу или две программы решения задачи (например, одна из программ может быть менее эффективна). Если Вы сдадите две программы, то каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы обязательно кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

11.

Дан набор из N целых положительных чисел. Для каждого числа вычисляется сумма двух последних цифр в его десятичной записи (для однозначных чисел предпоследняя цифра считается равной нулю). Необходимо определить,

какая сумма при этом получается чаще всего. Если таких сумм несколько, необходимо вывести наибольшую из них.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается

не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой,итоговой станет бо́льшая из двух оценок. Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

 

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

Пример входных данных:

5

15

417

123

6

4841

Пример выходных данных для приведённого выше примера входных данных:

6

Суммы двух последних цифр для чисел из данного набора равны 6, 8, 5, 6, 5.

Чаще других (по два раза) встречаются 6 и 5, в ответе выводится бо́льшая из этих сумм.

12.

Дан набор из N целых положительных чисел. Для каждого числа вычисляется сумма двух последних цифр в его десятичной записи (для однозначных чисел предпоследняя цифра считается равной нулю). Необходимо определить, какая сумма при этом получается реже всего (но не менее одного раза). Если таких сумм несколько, необходимо вывести наименьшую из них.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бóльшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

 

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

Пример входных данных:

5

14

417

123

3

4841

Пример выходных данных для приведённого выше примера входных данных:

3

Суммы двух последних цифр для чисел из данного набора равны 5, 8, 5, 3, 5.

Реже других (по одному разу) встречаются 8 и 3, в ответе выводится меньшая из этих сумм.

13.

Дан набор из N целых положительных чисел. Из этих чисел формируются все возможные пары (парой считаются два элемента, которые находятся на разных местах в наборе, порядок чисел в паре не учитывается), в каждой паре вычисляется сумма элементов. Необходимо определить количество пар, для которых полученная сумма делится на 7.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксическихошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000).

В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

5

1

3

6

11

1

Пример выходных данных для приведённого выше примера входных данных:

3

Из 5 чисел можно составить 10 пар. В данном случае у трёх пар сумма делится на 7: 1 + 6, 1 + 6 (в наборе две единицы, поэтому пару 1 + 6 можно составить двумя способами), 3 + 11.

14.

Дан набор из N целых положительных чисел. Из этих чисел формируются все возможные пары (парой считаются два элемента, которые находятся на разных местах в наборе, порядок чисел в паре не учитывается), в каждой паре вычисляется сумма элементов. Необходимо определить количество пар, для которых полученная сумма делится на 9.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

5

4

3

5

4

15

 

Пример выходных данных для приведённого выше примера входных данных:

3

 

Из 5 чисел можно составить 10 пар. В данном случае у трёх пар сумма делится на 9: 4 + 5, 4 + 5 (в наборе две четвёрки, поэтому пару 4 + 5 можно составить двумя способами), 3 + 15.

15.

Дан набор из N целых положительных чисел. Из этих чисел формируются все возможные пары (парой считаются два элемента, которые находятся на разных местах в наборе, порядок чисел в паре не учитывается), в каждой паре вычисляется сумма элементов. Необходимо определить количество пар, для которых полученная сумма делится на 8.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

5

1

5

7

11

1

 

Пример выходных данных для приведённого выше примера входных данных:

3

Из 5 чисел можно составить 10 пар. В данном случае у трёх пар сумма делится на 8: 1 + 7, 1 + 7 (в наборе две единицы, поэтому пару 1 + 7 можно составить двумя способами), 5 + 11.

16.

Дан набор из N целых положительных чисел. Из этих чисел формируются все возможные пары (парой считаются два элемента, которые находятся на разных местах в наборе, порядок чисел в паре не учитывается), в каждой паре вычисляется сумма элементов. Необходимо определить количество пар, для которых полученная сумма делится на 10.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

5

4

5

6

4

15

Пример выходных данных для приведённого выше примера входных данных:

3

Из 5 чисел можно составить 10 пар. В данном случае у трёх пар сумма делится на 10: 4 + 6, 4 + 6 (в наборе две четвёрки, поэтому пару 4 + 6 можно составить двумя способами), 5 + 15.

17.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен). Необходимо определить количество пар, для которых произведение элементов не делится на 34.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1≤N≤1000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10 000. В качестве результата программа должна напечатать одно число: количество пар, в которых произведение элементов не кратно 34.

Пример входных данных:

5

3

4

10

11

17

Пример выходных данных для приведённого выше примера входных данных:

8

Пояснение. Из шести заданных чисел можно составить 10 попарных произведений: 3·4, 3·10, 3·11, 3·17, 4·10, 4·11, 4·17, 10·11, 10·17, 11·17 (результаты: 12, 30, 33, 51, 40, 44, 68, 110, 170, 187). Из них на 34 не делятся 8 произведения (3·4=12, 3·10=30, 3·11=33, 3·17=51, 4·10=40, 4·11=44, 10·11=110, 11·17=187).

Требуется написать эффективную по времени и по памяти программу для решения описанной задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну программу или две программы решения задачи (например, одна из программ может быть менее эффективна). Если Вы сдадите две программы, то каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы обязательно кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

18.

Дан набор из N целых положительных чисел. Из этих чисел формируются все возможные пары (парой считаются два элемента, которые находятся на разных местах в наборе, порядок чисел в паре не учитывается), в каждой паре вычисляются сумма и произведение элементов. Необходимо определить количество пар, у которых сумма нечётна, а произведение делится на 3.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 100.

Пример входных данных:

4

1

2

3

4

Пример выходных данных для приведённого выше примера входных данных:

2

Из четырёх чисел можно составить 6 пар. В данном случае условиям удовлетворяют две пары: (2, 3) и (3, 4). Суммы чисел в этих парах (5 и 7) нечётны, а произведения (6 и 12) делятся на 3. У всех остальных пар как минимум одно из этих условий не выполняется.

19.

Дан набор из N целых положительных чисел. Из этих чисел формируются все возможные пары (парой считаются два элемента, которые находятся на разных местах в наборе, порядок чисел в паре не учитывается), в каждой паре вычисляются сумма и произведение элементов. Необходимо определить количество пар, у которых сумма нечётна, а произведение делится на 5.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает одного килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 100.

Пример входных данных:

4

1

2

4

5

Пример выходных данных для приведённого выше примера входных данных:

2

Из четырёх чисел можно составить 6 пар. В данном случае условиям удовлетворяют две пары: (2, 5) и (4, 5). Суммы чисел в этих парах (7 и 9) нечётны, а произведения (10 и 20) делятся на 5. У всех остальных пар как минимум одно из этих условий не выполняется.

20.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен). Необходимо определить количество пар, для которых произведение элементов не кратно 14.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (1≤N≤1000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 1000. В качестве результата программа должна напечатать одно число: количество пар, в которых произведение элементов не кратно 14.

Пример входных данных:

4

2

6

5

42

Пример выходных данных для приведённого выше примера входных данных:

3

Пояснение. Из четырёх заданных чисел можно составить 6 попарных произведений: 2 · 6, 2 · 5, 2 · 42, 6 · 5, 6 · 42, 5 · 42. Из них на 14 не делятся 3 произведения (2 · 6, 2 · 5, 6 · 5).

Требуется написать эффективную по времени и по памяти программу для решения описанной задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну программу или две программы решения задачи (например, одна из программ может быть менее эффективна). Если Вы сдадите две программы, то каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы обязательно кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

21.

Дан набор из N целых положительных чисел. Из них нужно выбрать и вывести два числа так, чтобы их сумма была нечётна, а произведение делилось на 3 и при этом было максимально возможным. Выбранные числа можно выводить в любом порядке. Если есть несколько подходящих пар, можно выбрать любую из них. Если подходящих пар нет, нужно вывести 0.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 100.

Пример входных данных:

5

1

2

3

4

5

Пример выходных данных для приведённого выше примера входных данных:

3 4

Из 5 чисел можно составить 10 пар. В данном случае условиям удовлетворяют две пары: (2, 3) и (3, 4). Суммы чисел в этих парах (5 и 7) нечётны, а произведения (6 и 12) делятся на 3. У всех остальных пар как минимум одно из этих условий не выполняется. Из двух возможных пар выводим ту, в которой больше произведение элементов.

22.

Дан набор из N целых положительных чисел. Из них нужно выбрать и вывести два числа так, чтобы их сумма была нечётна, а произведение делилось на 5 и при этом было максимально возможным. Выбранные числа можно выводить в любом порядке. Если есть несколько подходящих пар, можно выбрать любую из них. Если подходящих пар нет, нужно вывести 0.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 100.

Пример входных данных:

5

1

2

4

5

7

Пример выходных данных для приведённого выше примера входных данных:

4 5

Из 5 чисел можно составить 10 пар. В данном случае условиям удовлетворяют две пары: (2, 5) и (4, 5). Суммы чисел в этих парах (7 и 11) нечётны, а произведения (10 и 20) делятся на 5. У всех остальных пар как минимум одно из этих условий не выполняется. Из двух возможных пар выводим ту, в которой больше произведение элементов.

23.

Дан набор из N < 1000 натуральных чисел, каждое из которых не превышает 10000. Из них необходимо определить, сколько имеется пар чисел, разница между индексами которых не меньше 5, а произведение элементов в которых кратно 13. Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (3 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

Пример входных данных:

7

4

14

27

39

7

2

13

Пример выходных данных для приведённого выше примера входных данных:

2

Из 7 чисел можно составить 14 пар. В данном случае условиям удовлетворяют две пары: (4, 13) и (14, 13). Произведения (52 и 182) делятся на 13, а номера элементов в паре отличаются не менее, чем на . У всех остальных пар как минимум одно из этих условий не выполняется. Из двух возможных пар выводим ту, в которой больше произведение элементов.

24.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности, находящихся на расстоянии не меньше чем 4 (разница в индексах элементов пары должна быть 4 или более, порядок элементов в паре неважен). Необходимо определить количество таких пар, для которых произведение элементов делится на 29.

Описание входных и выходных данных

В первой строке входных данных задаётся количество чисел N (4 ≤ N ≤ 1000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10 000.

В качестве результата программа должна вывести одно число: количество пар элементов, находящихся в последовательности на расстоянии не меньше чем 4, в которых произведение элементов кратно 29.

Пример входных данных:

7

58

2

3

5

4

1

29

Пример выходных данных для приведённого выше примера входных данных:

5

Пояснение. Из 7 заданных элементов с учётом допустимых расстояний между ними можно составить 6 произведений: 58 · 4, 58 · 1, 58 · 29, 2 · 1, 2 · 29, 3 · 29. Из них на 29 делятся 5 произведений.

Требуется написать эффективную по времени и по памяти программу для решения описанной задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 Кбайт и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, – 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени – 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, – 2 балла.

Вы можете сдать одну программу или две программы решения задачи (например, одна из программ может быть менее эффективна). Если Вы сдадите две программы, то каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы обязательно кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

25.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 друг от друга (разница в индексах элементов должна быть 6 или более). Необходимо определить максимальную сумму такой пары.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (7 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

Пример входных данных:

8

1

3

5

4

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

11

Пояснение. Из 8 чисел можно составить 3 пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (1, 9), (1, 8), (3, 8). Максимальная сумма чисел в этих парах равна 11.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

26.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 8 друг от друга (разница в индексах элементов должна быть 8 или более). Необходимо определить максимальную сумму такой пары.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (9 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000.

Пример входных данных:

10

1

3

5

4

6

7

9

10

12

11

Пример выходных данных для приведённого выше примера входных данных:

14

Пояснение. Из 10 чисел можно составить 3 пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 9, 1 и 10, 2 и 10. Для заданного набора чисел получаем пары (1, 12), (1, 11), (3, 11). Максимальная сумма чисел в этих парах равна 14.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

27.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 (разница в индексах элементов должна быть 6 или более). Необходимо определить количество пар, произведение чисел в которых кратно 6.

Описание входных и выходных данных.

первой строке входных данных задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

8

1

3

5

4

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

1

Пояснение. Из 8 чисел можно составить 3 пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (1, 9), (1, 8), (3, 8). Произведения чисел в этих парах равны 9, 8, 24. На 6 делится одно из этих произведений.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

28.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 10 (разница в индексах элементов должна быть 10 или более). Необходимо определить количество пар, произведение чисел в которых кратно 10.

Описание входных и выходных данных.

первой строке входных данных задаётся количество чисел N (10 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

12

1

5

5

8

9

4

12

14

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

1

Пояснение. Из 12 чисел можно составить 3 пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 11, 1 и 12, 2 и 12. Для заданного набора чисел получаем пары (1, 9), (1, 8), (5, 8). Произведения чисел в этих парах равны 9, 8, 40. На 10 делится одно из этих произведений.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

29.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 (разница в индексах элементов должна быть 6 или более). Необходимо определить количество пар, сумма чисел в которых нечётна.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

8

1

3

5

4

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

2

Пояснение. Из 8 чисел можно составить 3 пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (1, 9), (1, 8), (3, 8). Суммы чисел в этих парах равны 10, 9, 11. Нечётных сумм — две.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

30.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 (разница в индексах элементов должна быть 6 или более). Необходимо определить количество пар, сумма чисел в которых чётна.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

8

1

3

5

4

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

1

Пояснение. Из 8 чисел можно составить 3 пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (1, 9), (1, 8), (3, 8). Суммы чисел в этих парах равны 10, 9, 11. Чётная сумма — одна.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

31.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре неважен). Необходимо определить количество пар, для которых произведение элементов кратно 62.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10000. В качестве результата программа должна вывести одно число: количество пар, в которых произведение элементов кратно 62.

Пример входных данных:

5

2

6

13

31

93

Пример выходных данных для приведённого выше примера входных данных:

4

Пояснение. Из 5 чисел можно составить 4 пары, удовлетворяющие условию. Для заданного набора чисел получаем пары (2, 31), (2, 93), (6, 31), (6, 93).

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

32.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности (элементы пары могут быть расположены в последовательности не рядом, порядок элементов в паре неважен). Необходимо определить количество пар, для которых произведение элементов делится без остатка на 10.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 1000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10 000.

В качестве результата программа должна напечатать одно число: количество пар, в которых произведение элементов кратно 10.

Пример входных данных:

4

2

6

5

15

Пример выходных данных для приведённого выше примера входных данных:

4

 

Пояснение. Из четырёх заданных чисел можно составить 6 попарных произведений: 2 · 6, 2 · 5, 2 · 15, 6 · 5, 6 · 15, 5 · 15 (результаты: 12, 10, 30, 30, 90, 75). Из них на 10 без остатка делятся 4 произведения (2 · 5 = 10; 2 · 15 = 30; 6 · 5 = 30; 6 · 15 = 90).

Требуется написать эффективную по времени и памяти программу для решения описанной задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну программу или две программы решения задачи (например, одна из программ может быть менее эффективна). Если Вы сдадите две программы, то каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы обязательно кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

33.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 (разница в индексах элементов должна быть 6 или более). Необходимо определить максимальную нечётную сумму такой пары. Если пар с нечётной суммой нет, ответ считается равным 0.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример входных данных:

8

1

3

5

4

6

7

9

8

 

Пример выходных данных для приведённого выше примера входных данных:

11

Пояснение. Из восьми чисел можно составить три пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (1, 9), (1, 8), (3, 8). Суммы чисел в этих парах равны 10, 9, 11. Нечётных сумм — две, максимальная из них равна 11.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

34.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 (разница в индексах элементов должна быть 6 или более). Необходимо определить количество пар, сумма чисел в которых кратна 3.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000

Пример входных данных:

8

1

3

5

4

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

1

Пояснение. Из восьми чисел можно составить три пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (1, 9), (1, 8), (3, 8). Суммы чисел в этих парах равны 10, 9, 11. Одна из этих сумм кратна 3.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.

35.

Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, находящихся на расстоянии не меньше 6 (разница в индексах элементов должна быть 6 или более). Необходимо определить количество пар, разность чисел в которых кратна 3.

Описание входных и выходных данных.

В первой строке входных данных задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000

Пример входных данных:

8

2

6

5

4

6

7

9

8

Пример выходных данных для приведённого выше примера входных данных:

1

Пояснение. Из восьми чисел можно составить три пары, удовлетворяющие условию. Это будут элементы с индексами 1 и 7, 1 и 8, 2 и 8. Для заданного набора чисел получаем пары (2, 9), (2, 8), (6, 8). Разности чисел в этих парах равны 7, 6, 2. Одна из этих разностей кратна 3.

Напишите эффективную по времени и по памяти программу для решения этой задачи.

Программа считается эффективной по времени, если при увеличении количества исходных чисел N в k раз время работы программы увеличивается не более чем в k раз.

Программа считается эффективной по памяти, если память, необходимая для хранения всех переменных программы, не превышает 1 килобайта и не увеличивается с ростом N.

Максимальная оценка за правильную (не содержащую синтаксических ошибок и дающую правильный ответ при любых допустимых входных данных) программу, эффективную по времени и по памяти, — 4 балла.

Максимальная оценка за правильную программу, эффективную только по времени или только по памяти, — 3 балла.

Максимальная оценка за правильную программу, не удовлетворяющую требованиям эффективности, — 2 балла.

Вы можете сдать одну или две программы решения задачи. Если Вы сдадите две программы, каждая из них будет оцениваться независимо от другой, итоговой станет бо́льшая из двух оценок.

Перед текстом программы кратко опишите алгоритм решения. Укажите использованный язык программирования и его версию.