СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Информатика
≡ информатика
сайты - меню - вход - новости




Каталог заданий
Разное

Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 18 № 7763

На числовой прямой даны два отрезка: P = [5, 30] и Q = [14, 23]. Укажите наибольшую возможную длину промежутка A, для которого формула

 

((x ∈ P) ≡ (x ∈ Q)) → ¬(x ∈ A)

 

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.


Аналоги к заданию № 7763: 7790 Все

Пояснение · ·

2
Задание 18 № 8666

На числовой прямой даны два отрезка: P = [25; 50] и Q = [32; 47]. Укажите наибольшую возможную длину промежутка A, для которого формула

 

(¬ (x A) → (x P)) → ((x A) → (x Q))

 

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.


Аналоги к заданию № 8666: 9170 Все

Пояснение · ·

3
Задание 18 № 13364

На числовой прямой даны два отрезка: P = [130; 171] и Q = [150; 185]. Укажите наименьшую возможную длину такого отрезка A, что формула

 

(x ∈ P) → (((x ∈ Q) ∧ ¬(x ∈ A)) → ¬(x ∈ P))

 

истинна при любом значении переменной х, т.е. принимает значение 1 при любом значении переменной х.

Источник: ЕГЭ — 2017. До­сроч­ная волна по информатике

4
Задание 18 № 8106

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

 

¬ДЕЛ(x, А) → (ДЕЛ(x, 6) → ¬ДЕЛ(x, 4))

 

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?


Аналоги к заданию № 8106: 9320 9321 9322 Все

Источник: ЕГЭ 05.05.2015. До­сроч­ная волна.

5
Задание 18 № 14233

На числовой прямой даны два отрезка: P = [17, 46] и Q = [22, 57]. Отрезок A таков, что приведённая ниже формула истинна при любом значении переменной х:

 

¬(x ∈ A) →(((x ∈ P) ⋀ (x ∈ Q)) → (x ∈ A))

 

Какова наименьшая возможная длина отрезка A?


6
Задание 18 № 14277

На числовой прямой даны два отрезка: P = [17, 40] и Q = [20, 57]. Отрезок A таков, что приведённая ниже формула истинна при любом значении переменной х:

 

¬(x ∈ A) →(((x ∈ P) ⋀ (x ∈ Q)) → (x ∈ A))

 

Какова наименьшая возможная длина отрезка A?


Пройти тестирование по этим заданиям